Abstract

A continuous-wave (CW) and passively Q-switched Tm:Y2O3 ceramic laser emitting at 2.1 μm were reported for the first time. A volume Bragg grating (VBG) acted as the input mirror which enables wavelength selection of the Tm:Y2O3 laser. The gold-nanorods-based saturable output coupler combined the function of passive Q-switching and output coupling. In the CW mode, the VBG-locked Tm:Y2O3 ceramic laser generated 1.1 W at 2101.5 nm with a linewidth (FWHM) of 0.4 nm. In the passively Q-switched operation, pulses with a maximum average output power of 455 mW, a minimum pulse width of 609 ns, and a pulse repetition rate of 79 kHz were achieved. Our work provides a more compact and efficient design for obtaining a nanosecond 2.1 μm laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm

Hui Wang, Haitao Huang, Pian Liu, Lin Jin, Deyuan Shen, Jian Zhang, and Dingyuan Tang
Opt. Mater. Express 7(2) 296-303 (2017)

Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7  μm

Xiaofeng Guan, Linjie Zhan, Zhenwei Zhu, Bin Xu, Huiying Xu, Zhiping Cai, Weiwei Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Appl. Opt. 57(3) 371-376 (2018)

Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers

Xiaofeng Guan, Jiawei Wang, Yuzhao Zhang, Bin Xu, Zhengqian Luo, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Photon. Res. 6(9) 830-836 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. S. Sacks, Z. Schiffer and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications, 645320 (2007).
  2. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal ed. (Intech, 2010).
  3. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
    [Crossref]
  4. W. Ryba-Romanowski, R. Ł. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: Growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35(5), 109–157 (2011).
    [Crossref]
  5. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
    [Crossref] [PubMed]
  6. X. J. Cheng, J. Q. Xu, Y. Hang, G. J. Zhao, and S. Y. Zhang, “High-power diode-end-pumped Tm:YAP and Tm:YLF slab lasers,” Chin. Opt. Lett. 9(9), 091406 (2011).
    [Crossref]
  7. T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
    [Crossref] [PubMed]
  8. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
    [Crossref] [PubMed]
  9. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramic,” Opt. Mater. Express 2(2), 183–189 (2012).
    [Crossref]
  10. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
    [Crossref] [PubMed]
  11. O. Antipov, A. Novikov, S. Larin, and I. Obronov, “Highly efficient 2 μm CW and Q-switched Tm3+:Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm,” Opt. Lett. 41(10), 2298–2301 (2016).
    [Crossref] [PubMed]
  12. H. Wang, H. T. Huang, P. Liu, L. Jin, D. Y. Shen, J. Zhang, and D. Y. Tang, “Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm,” Opt. Mater. Express 7(2), 296–303 (2017).
    [Crossref]
  13. P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm: Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
    [Crossref]
  14. Y. L. Chen, W. W. Chen, C. E. Du, W. K. Chang, J. L. Wang, T. Y. Chung, and Y. H. Chen, “Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings,” Opt. Express 17(25), 22578–22585 (2009).
    [Crossref] [PubMed]
  15. H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza, “Tm:YLF slab wavelength-selected laser,” Opt. Mater. Express 2(8), 1165–1170 (2012).
    [Crossref]
  16. U. N. Singh and J. Yu, “Narrow line-width, high-energy, 2-micron laser for coherent wind lidar,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CA11.
    [Crossref]
  17. D. Sebbag, A. Korenfeld, U. Ben-Ami, D. Elooz, E. Shalom, and S. Noach, “Diode end-pumped passively Q-switched Tm:YAP laser with 1.85-mJ pulse energy,” Opt. Lett. 40(7), 1250–1253 (2015).
    [Crossref] [PubMed]
  18. J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, D. Z. Li, and J. Xu, “Passively Q-Switched Tm:CaGdAlO4 laser using a Cr2+:ZnSe saturable absorber,” Opt. Mater. Express 7(6), 1725–1731 (2017).
    [Crossref]
  19. C. Luan, K. Yang, J. Zhao, S. Zhao, L. Song, T. Li, H. Chu, J. Qiao, C. Wang, Z. Li, S. Jiang, B. Man, and L. Zheng, “WS2 as a saturable absorber for Q-switched 2 micron lasers,” Opt. Lett. 41(16), 3783–3786 (2016).
    [Crossref] [PubMed]
  20. H. K. Zhang, J. L. He, Z. W. Wang, J. Hou, B. T. Zhang, R. W. Zhao, K. Z. Han, K. J. Yang, H. K. Nie, and X. L. Sun, “Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber,” Opt. Mater. Express 6(7), 2328–2335 (2016).
    [Crossref]
  21. Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, and J. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
    [Crossref] [PubMed]
  22. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
    [Crossref]
  23. H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photonics J. 7(4), 4501210 (2015).
    [Crossref]
  24. H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
    [Crossref] [PubMed]
  25. J. Liu, Z. Wang, X. Meng, Z. Shao, B. Ozygus, A. Ding, and H. Weber, “Improvement of passive Q-switching performance reached with a new Nd-doped mixed vanadate crystal Nd:Gd0.64Y0.36VO4.,” Opt. Lett. 28(23), 2330–2332 (2003).
    [Crossref] [PubMed]
  26. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27(9), 2220–2225 (1991).
    [Crossref]
  27. B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
    [Crossref]
  28. T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
    [Crossref]
  29. Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
    [Crossref]
  30. J. M. Serres, P. Loiko, X. Mateos, V. Jambunathan, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber,” Appl. Opt. 55(14), 3757–3763 (2016).
    [Crossref] [PubMed]

2017 (3)

2016 (6)

2015 (3)

2014 (4)

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

2012 (4)

2011 (3)

2009 (1)

2008 (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

2003 (1)

1991 (1)

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27(9), 2220–2225 (1991).
[Crossref]

Aguiló, M.

Antipov, O.

Antipov, O. L.

Balashov, V. V.

P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm: Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Ben-Ami, U.

Cai, Z. P.

Chabushkin, A. N.

P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm: Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Chang, W. K.

Chen, H.

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Chen, W. W.

Chen, Y. H.

Chen, Y. L.

Cheng, X. J.

Chu, H.

Chung, T. Y.

Cui, Z.

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

Dekorsy, T.

Díaz, F.

Ding, A.

Du, C. E.

Du, Y.

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

Du, Y. Q.

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

Duan, X.

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

Duan, X. M.

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

Elooz, D.

Esser, M. J. D.

Feng, T.

Feng, Y.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Fuhrberg, P.

Gao, W. L.

Gao, X. J.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Griebner, U.

Guan, X. F.

Han, K. Z.

Hang, Y.

He, J.

He, J. L.

Hou, J.

Huang, H.

Huang, H. T.

H. Wang, H. T. Huang, P. Liu, L. Jin, D. Y. Shen, J. Zhang, and D. Y. Tang, “Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm,” Opt. Mater. Express 7(2), 296–303 (2017).
[Crossref]

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photonics J. 7(4), 4501210 (2015).
[Crossref]

Huber, G.

Jambunathan, V.

Jelinková, H.

W. Ryba-Romanowski, R. Ł. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: Growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35(5), 109–157 (2011).
[Crossref]

Jia, Z. X.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Jiang, S.

Jin, L.

Kang, Z.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Kelley, P. L.

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27(9), 2220–2225 (1991).
[Crossref]

King, G.

Koopmann, P.

Kopylov, Yu. L.

P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm: Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Korenfeld, A.

Lagatsky, A. A.

Lamrini, S.

Lan, J. L.

Larin, S.

Li, D. Z.

Li, J.

Li, M.

H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
[Crossref] [PubMed]

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photonics J. 7(4), 4501210 (2015).
[Crossref]

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Li, T.

Li, Z.

Lisiecki, R. L.

W. Ryba-Romanowski, R. Ł. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: Growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35(5), 109–157 (2011).
[Crossref]

Liu, J.

Liu, P.

Liu, X.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photonics J. 7(4), 4501210 (2015).
[Crossref]

Loiko, P.

Lopukhin, K. V.

P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm: Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Luan, C.

Luo, D. W.

Ma, J.

Man, B.

Mateos, X.

Maweza, L.

Meng, X.

Nie, H. K.

Noach, S.

Novikov, A.

Novikov, A. A.

Obronov, I.

Ozygus, B.

Petermann, K.

Petrov, V.

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

Qian, L. J.

Qiao, J.

Qiao, W.

Qin, G. S.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Qin, W. P.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Ryabochkina, P. A.

P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm: Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Ryba-Romanowski, W.

W. Ryba-Romanowski, R. Ł. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: Growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35(5), 109–157 (2011).
[Crossref]

Scholle, K.

Schunemann, P. G.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

Sebbag, D.

Serres, J. M.

Setzler, S. D.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

Shalom, E.

Shao, Z.

Shen, D.

Shen, D. Y.

H. Wang, H. T. Huang, P. Liu, L. Jin, D. Y. Shen, J. Zhang, and D. Y. Tang, “Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm,” Opt. Mater. Express 7(2), 296–303 (2017).
[Crossref]

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photonics J. 7(4), 4501210 (2015).
[Crossref]

Shen, Y. J.

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

Sibbett, W.

Song, L.

Strauss, H. J.

Su, L.

Šulc, J.

W. Ryba-Romanowski, R. Ł. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: Growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35(5), 109–157 (2011).
[Crossref]

Sun, D.

Sun, X. L.

Sun, Y.

Tang, D. Y.

Tu, C.

Wang, C.

Wang, H.

Wang, J.

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

Wang, J. L.

Wang, L.

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photonics J. 7(4), 4501210 (2015).
[Crossref]

Wang, Q.

Wang, Y.

Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, and J. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
[Crossref] [PubMed]

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

Wang, Z.

Wang, Z. W.

Weber, H.

Xie, G. Q.

Xu, B.

Xu, H. Y.

Xu, J.

Xu, J. Q.

Xu, S.

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

Xu, X.

Xu, X. D.

Yang, H.

Yang, K.

Yang, K. J.

Yao, B.

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

Yao, B. Q.

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

Yasukevich, A. S.

You, Z.

Yuan, P.

Yumashev, K. V.

Zakharov, N. G.

Zawilski, K. T.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27(9), 2220–2225 (1991).
[Crossref]

Zhang, B. T.

Zhang, H. K.

Zhang, J.

Zhang, L.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Zhang, S. Y.

Zhao, G. J.

Zhao, J.

Zhao, R. W.

Zhao, S.

Zhao, T.

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Zheng, L.

Zhou, Z. Y.

Zhu, Z.

Zinoviev, A. P.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

B. Q. Yao, Z. Cui, X. M. Duan, Y. J. Shen, J. Wang, and Y. Q. Du, “A graphene-based passively Q-switched Ho:YAG laser,” Chin. Phys. Lett. 31(7), 074204 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27(9), 2220–2225 (1991).
[Crossref]

IEEE Photonics J. (1)

H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, and D. Y. Tang, “Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser,” IEEE Photonics J. 7(4), 4501210 (2015).
[Crossref]

J. Cryst. Growth (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

Laser Phys. Lett. (1)

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Opt. Eng. (1)

Z. Cui, B. Yao, X. Duan, Y. Du, S. Xu, and Y. Wang, “Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber,” Opt. Eng. 53(12), 126112 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

D. Sebbag, A. Korenfeld, U. Ben-Ami, D. Elooz, E. Shalom, and S. Noach, “Diode end-pumped passively Q-switched Tm:YAP laser with 1.85-mJ pulse energy,” Opt. Lett. 40(7), 1250–1253 (2015).
[Crossref] [PubMed]

O. Antipov, A. Novikov, S. Larin, and I. Obronov, “Highly efficient 2 μm CW and Q-switched Tm3+:Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm,” Opt. Lett. 41(10), 2298–2301 (2016).
[Crossref] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
[Crossref] [PubMed]

H. Huang, M. Li, P. Liu, L. Jin, H. Wang, and D. Shen, “Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser,” Opt. Lett. 41(12), 2700–2703 (2016).
[Crossref] [PubMed]

J. Liu, Z. Wang, X. Meng, Z. Shao, B. Ozygus, A. Ding, and H. Weber, “Improvement of passive Q-switching performance reached with a new Nd-doped mixed vanadate crystal Nd:Gd0.64Y0.36VO4.,” Opt. Lett. 28(23), 2330–2332 (2003).
[Crossref] [PubMed]

C. Luan, K. Yang, J. Zhao, S. Zhao, L. Song, T. Li, H. Chu, J. Qiao, C. Wang, Z. Li, S. Jiang, B. Man, and L. Zheng, “WS2 as a saturable absorber for Q-switched 2 micron lasers,” Opt. Lett. 41(16), 3783–3786 (2016).
[Crossref] [PubMed]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, and J. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
[Crossref] [PubMed]

Opt. Mater. Express (5)

Prog. Quantum Electron. (1)

W. Ryba-Romanowski, R. Ł. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: Growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35(5), 109–157 (2011).
[Crossref]

Quantum Electron. (1)

P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm: Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Other (3)

U. N. Singh and J. Yu, “Narrow line-width, high-energy, 2-micron laser for coherent wind lidar,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CA11.
[Crossref]

Z. S. Sacks, Z. Schiffer and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications, 645320 (2007).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal ed. (Intech, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the VBG-locked Tm:Y2O3 ceramic laser with the inset showing the TEM image of GNRs.
Fig. 2
Fig. 2 Laser performance of VBG-locked 2.1μm Tm:Y2O3 ceramic in CW and passively Q-switching operation.
Fig. 3
Fig. 3 Lasing spectrum Tm:Y2O3 ceramic in free-running and VBG-locked operation.
Fig. 4
Fig. 4 Pulse repetition rates (a), pulse width (b), pulse peak power (c) and pulse energy (d) versus the absorbed pump power.
Fig. 5
Fig. 5 Typical pulse train and single pulse with the pulse width of 609 ns at the repetition rate of 79 kHz.

Metrics