Abstract

A detailed investigation of the photo-inscription of waveguides in barium gallo-germanate (BGG, BaO, GeO2, Ga2O3) glass is presented. Upon irradiation of BGG glass samples of different contents of germanium dioxide with a femtosecond laser pulse train, positive refractive index changes are produced over a wide range of exposure conditions. Waveguides with a controllable diameter ranging from 4 to 35 µm and a maximum index change up to 10−2 were inscribed. A glass sample with custom molecular composition was purified to remove hydroxyl ions and reduce the strong absorption band near 3 µm. A careful tailoring of the writing conditions allowed for the inscription of low-loss waveguides supporting only two transverse modes at the wavelength of 2.78 µm. An upper bound for the propagation losses of 0.5 ± 0.1 dB/cm was determined, showing the great potential of the BGG glass family for the fabrication of core waveguides operating in the 2-4 µm spectral range. Our results actually open a pathway towards the integration of mid-IR photonic devices based on the BGG glass family.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring the refractive index of Ge-S based glass for 3D embedded waveguides operating in the mid-IR region

J. P. Bérubé, S. H. Messaddeq, M. Bernier, I. Skripachev, Y. Messaddeq, and R. Vallée
Opt. Express 22(21) 26103-26116 (2014)

Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm

Thomas Allsop, Mykhaylo Dubov, Vladimir Mezentsev, and Ian Bennion
Appl. Opt. 49(10) 1938-1950 (2010)

Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing

Shi-Ling Li, Peigao Han, Meng Shi, Yicun Yao, Bing Hu, Mingwei Wang, and Xiaonong Zhu
Opt. Express 19(24) 23958-23964 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
    [Crossref]
  2. S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser, ” J. Non-Cryst. Sol. 357(11), 2387–2391 (2011).
  3. N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
    [Crossref] [PubMed]
  4. R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medecine and biology,” Phil. Trans. R. Soc. Lond. A 351(1780), 635-644(2014).
  5. R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
    [Crossref]
  6. A. Arriola, S. Gross, M. Ams, T. Gretzinger, D. Le Coq, R. Wang, H. Ebendorff-Heidepriem, J. Sanghera, S. Bayya, L. Shaw, M. Ireland, P. Tuthill, and M. Withford, “Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials,” Opt. Mater. Express 7(3), 698 (2017).
    [Crossref]
  7. F. Chen and J. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  8. J. P Bérubé, S. H. Messaddeq, I. Skripachev, R. Vallée, and Y. Messaddeq, “The influence of sulfur content on the photosensitivity of GeSx binary glass to infrared femtosecond pulses,” Opt. Express 22(23), 26103–26116 (2014).
    [PubMed]
  9. S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23(6), 7946–7956 (2015).
    [Crossref] [PubMed]
  10. J. Bai, X. Long, X. Liu, G. Huo, W. Zhao, R. Stoian, R. Hui, and G. Cheng, “Embedded optical waveguides fabricated in SF10 glass by low-repetition-rate ultrafast laser,” Appl. Opt. 52(30), 7288–7294 (2013).
    [Crossref] [PubMed]
  11. S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14(24), 11687–11693 (2006).
    [Crossref] [PubMed]
  12. S. Bayya, J. Sanghera, and I. Aggarwal, “Optical transmission of BGG glass material,” United States Patent 0159289A1, 21 July 2005.
  13. B. McMillen, B. Zhang, K. P. Chen, A. Benayas, and D. Jaque, “Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss,” Opt. Lett. 37(9), 1418–1420 (2012).
    [Crossref] [PubMed]
  14. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [Crossref]
  15. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30(3), 245–247 (2005).
    [Crossref] [PubMed]
  16. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [Crossref] [PubMed]
  17. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express 1(4), 766–782 (2011).
    [Crossref]
  18. C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  19. J. P Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
    [Crossref]
  20. S. H. Messaddeq, J. P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express 20(3), 2824–2831 (2012).
    [Crossref] [PubMed]
  21. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]

2017 (1)

2015 (2)

S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23(6), 7946–7956 (2015).
[Crossref] [PubMed]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

2014 (4)

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref] [PubMed]

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medecine and biology,” Phil. Trans. R. Soc. Lond. A 351(1780), 635-644(2014).

F. Chen and J. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

J. P Bérubé, S. H. Messaddeq, I. Skripachev, R. Vallée, and Y. Messaddeq, “The influence of sulfur content on the photosensitivity of GeSx binary glass to infrared femtosecond pulses,” Opt. Express 22(23), 26103–26116 (2014).
[PubMed]

2013 (2)

2012 (2)

2011 (3)

2009 (1)

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

2008 (1)

2006 (1)

2005 (1)

2003 (2)

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Aggarwal, I. D.

Ams, M.

Androz, G.

Arriola, A.

Bai, J.

Bayya, S.

Bayya, S. S.

Benayas, A.

Bernier, M.

Bérubé, J. P

Bérubé, J. P.

Caron, N.

Cerullo, G.

Chahid-Erraji, A.

Chen, F.

F. Chen and J. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, K. P.

Chen, W. J.

Cheng, G.

Chin, G. D.

Clifford, J.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Cohen, M.

De Silvestri, S.

Dooly, G.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Eaton, S.

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser, ” J. Non-Cryst. Sol. 357(11), 2387–2391 (2011).

Eaton, S. M.

Ebendorff-Heidepriem, H.

Faucher, D.

Gannot, I.

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medecine and biology,” Phil. Trans. R. Soc. Lond. A 351(1780), 635-644(2014).

Garcia, J.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Gräfe, M.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Gretzinger, T.

Gross, S.

Guérineau, N.

Heilmann, R.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Herman, P.

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser, ” J. Non-Cryst. Sol. 357(11), 2387–2391 (2011).

Herman, P. R.

Ho, S.

Hui, R.

Huo, G.

Ilev, I.

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medecine and biology,” Phil. Trans. R. Soc. Lond. A 351(1780), 635-644(2014).

Ireland, M.

Jaque, D.

Jovanovic, N.

Kazansky, P.

Lancry, M.

Laporta, P.

Lawrence, J.

Le Coq, D.

Lewis, E.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Li, J.

Liu, X.

Long, X.

Love, J. D.

Marangoni, M.

Mazur, E.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

McMillen, B.

Meany, T.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Messaddeq, S. H.

Messaddeq, Y.

Muda, R.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Ng, M.

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser, ” J. Non-Cryst. Sol. 357(11), 2387–2391 (2011).

Ng, M. L.

O’Keeffe, S.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Osellame, R.

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser, ” J. Non-Cryst. Sol. 357(11), 2387–2391 (2011).

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Perez-Leija, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Polli, D.

Poumellec, B.

Primot, J.

Ramponi, R.

Riesen, N.

Sanghera, J.

Sanghera, J. S.

Schaffer, C.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Sharp, A.

Shaw, L.

Skripachev, I.

Steel, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Stoian, R.

Szameit, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Taccheo, S.

Tuthill, P.

Vallée, R.

Vazquez de Aldana, J.

F. Chen and J. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Velghe, S.

Wang, R.

Wattellier, B.

Waynant, R. W.

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medecine and biology,” Phil. Trans. R. Soc. Lond. A 351(1780), 635-644(2014).

Withford, M.

Withford, M. J.

Zhang, B.

Zhang, H.

Zhao, W.

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

J. Non-Cryst. Sol. (1)

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser, ” J. Non-Cryst. Sol. 357(11), 2387–2391 (2011).

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Laser Photonics Rev. (2)

F. Chen and J. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. Express (3)

Phil. Trans. R. Soc. Lond. A (1)

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medecine and biology,” Phil. Trans. R. Soc. Lond. A 351(1780), 635-644(2014).

Other (1)

S. Bayya, J. Sanghera, and I. Aggarwal, “Optical transmission of BGG glass material,” United States Patent 0159289A1, 21 July 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Attenuation spectrum of purified (BGG-BaF), and un-purified (BGG-65) 4 mm thick BGG samples with a molecular % composition of 17.5 BaO, 65 GeO2, 17.5 Ga2O3.

Fig. 2
Fig. 2

Schematic of the transmission loss measurement setup.

Fig. 3
Fig. 3

a) Pulse energy vs translation speed map showing the formation of type I and type III modifications in BGG-75. b) Close-up of the onset of the type I modifications. c) Longitudinal images of type I and III modification traces.

Fig. 4
Fig. 4

Cross section (left) and longitudinal (right) images of waveguides inscribed in BGG-75. The width and the peak value of Δn is indicated. Irradiation conditions, A: E = 1 µJ, v = 0.5 mm·s−1, B: E = 0.6 µJ, v = 5 mm·s−1, C: E = 0.5 µJ, v = 50 mm·s−1.

Fig. 5
Fig. 5

Width (left) and peak Δn (right) of waveguides inscribed in BGG samples as function of pulse energy at a moderate translation speed of 5 mm·s−1.

Fig. 6
Fig. 6

Index contrast (Δn) measured at the center of waveguides inscribed in BGG-65 with a pulse energy of a) 0.5 µJ and b) 0.7 µJ as a function of the number of passes. Image of the cross section and refractive index profile of waveguides inscribed with low and high number of pulses for traces inscribed at: c) low fluence(E = 0.5 µJ, v = 20 mm·s−1) and d) high fluence (E = 0.7 µJ, v = 1 mm·s−1).

Fig. 7
Fig. 7

Cross section (left) and longitudinal (right) images of a waveguide inscribed in BGG-BaF glass (E = 0.65 µJ, v = 5mm·s−1). The white arrow indicates the beam direction during the inscription process.

Fig. 8
Fig. 8

Near field intensity profile of light at different wavelengths transmitted through the waveguide. The white scale bar equals 20 µm.

Tables (1)

Tables Icon

Table 1 Molar weight (%) and physical characteristics of BGG samples

Metrics