Abstract

We present two different fabrication approaches for a suspended lasing membrane with intricate sub-micron patterning for an InGaAsP/InP platform. One approach involves a hydrogen silsesquioxane (HSQ) electron beam lithography resist as a dry etch hard mask and another with an added chromium (Cr) hard mask. The Cr hard mask process allows for fine control over patterned dimensions in comparison to the HSQ mask. This is crucial to both membrane stability and device performance. Both approaches are heavily susceptible to dry etch requirements and the etching window used for membrane release. The techniques presented here are of practical interest to the design of membrane based devices with applications in microfluidic biosensors and flexible laser membranes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Etched beam splitters in InP/InGaAsP

Erik J. Norberg, John S. Parker, Steven C. Nicholes, Byungchae Kim, Uppiliappan Krishnamachari, and Larry A. Coldren
Opt. Express 19(2) 717-726 (2011)

Wafer-scale surface roughening for enhanced light extraction of high power AlGaInP-based light-emitting diodes

Hyeong-Ho Park, Xin Zhang, Yunae Cho, Dong-Wook Kim, Joondong Kim, Keun Woo Lee, Jehyuk Choi, Hee Kwan Lee, Sang Hyun Jung, Eun Jin Her, Chang Hwan Kim, A-Young Moon, Chan-Soo Shin, Hyun-Beom Shin, Ho Kun Sung, Kyung Ho Park, Hyung-Ho Park, Hi-Jung Kim, and Ho Kwan Kang
Opt. Express 22(S3) A723-A734 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, “Micro/nano-mechanical sensors and actuators based on SOI-MEMs technology,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 013001 (2010).
  2. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref] [PubMed]
  3. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
    [Crossref] [PubMed]
  4. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
    [Crossref]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  6. H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506 (2016).
    [Crossref]
  7. D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
    [Crossref] [PubMed]
  8. A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
    [Crossref]
  9. I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
    [Crossref] [PubMed]
  10. S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112(12), 127201 (2014).
    [Crossref] [PubMed]
  11. A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
    [Crossref]
  12. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd Ed (Wiley, 2012), Chapter 1.
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  14. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals – Molding the Flow of Light, 2nd Edition, Princeton (N.J.), Princeton University Press, 2008.
  15. J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 467 (1929).
  16. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
    [Crossref] [PubMed]
  17. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref] [PubMed]
  18. T. Lepetit and B. Kante, “Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum,” Phys. Rev. B 90, 241103(R) (2014).
    [Crossref]
  19. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
    [Crossref] [PubMed]
  20. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
    [Crossref]
  21. C. Youtsey and I. Adesida, Dry Etching of InP and Related Materials, in Handbook of Advanced Plasma Processing Techniques (Springer, 2000), pp. 479–483.
  22. S. Adachi and H. Kawaguchi, “Chemical etching characteristics of (001) InP,” J. Electrochem. Soc. 128(6), 1342 (1981).
    [Crossref]
  23. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
    [Crossref]
  24. P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
    [Crossref]
  25. B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
    [Crossref]
  26. K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
    [Crossref]
  27. F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20(6), 2932 (2002).
    [Crossref]
  28. J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
    [Crossref]
  29. H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
    [Crossref]
  30. D. Lauvernier, S. Garidel, C. Legrand, and J.-P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask,” Microelectron. Eng. 77(3-4), 210–216 (2005).
    [Crossref]
  31. K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing part II,” J. Microelectromech. Syst. 12(6), 6 (2003).
    [Crossref]
  32. S. Mendoza-Acevedo, M. A. Reyes-Barranca, E. N. Vazquez-Acosta, J. A. Moreno-Cadenas, and J. L. Gonzalez-Vidal, Micromachining Techniques for Fabrication of Micro and Nano Structures(InTech, 2012), Chapter 9.

2017 (1)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

2016 (2)

2014 (1)

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112(12), 127201 (2014).
[Crossref] [PubMed]

2013 (4)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

2010 (1)

D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, “Micro/nano-mechanical sensors and actuators based on SOI-MEMs technology,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 013001 (2010).

2009 (3)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
[Crossref] [PubMed]

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

2008 (4)

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

2005 (1)

D. Lauvernier, S. Garidel, C. Legrand, and J.-P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask,” Microelectron. Eng. 77(3-4), 210–216 (2005).
[Crossref]

2004 (1)

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
[Crossref]

2003 (3)

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing part II,” J. Microelectromech. Syst. 12(6), 6 (2003).
[Crossref]

A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2002 (1)

F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20(6), 2932 (2002).
[Crossref]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

1998 (1)

P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
[Crossref]

1993 (1)

B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
[Crossref]

1981 (1)

S. Adachi and H. Kawaguchi, “Chemical etching characteristics of (001) InP,” J. Electrochem. Soc. 128(6), 1342 (1981).
[Crossref]

1929 (1)

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 467 (1929).

Adachi, S.

S. Adachi and H. Kawaguchi, “Chemical etching characteristics of (001) InP,” J. Electrochem. Soc. 128(6), 1342 (1981).
[Crossref]

Ahopelto, J.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Alzine, F.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Apel, P. Y.

I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
[Crossref]

Bek, R.

Berggren, K. K.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Bornier, L.

P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
[Crossref]

Brauch, U.

Bui, T. T.

D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, “Micro/nano-mechanical sensors and actuators based on SOI-MEMs technology,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 013001 (2010).

Chakram, S.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112(12), 127201 (2014).
[Crossref] [PubMed]

Chang, L.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112(12), 127201 (2014).
[Crossref] [PubMed]

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
[Crossref]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Cord, B.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Cuffe, J.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Cui, Z.

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

Dao, D. V.

D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, “Micro/nano-mechanical sensors and actuators based on SOI-MEMs technology,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 013001 (2010).

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Delobelle, P.

P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
[Crossref]

Desormeaux, J.-P. S.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Ding, K.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

Dmitriev, S. N.

I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
[Crossref] [PubMed]

Duan, H.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Favero, I.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Gaborski, T. R.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Garidel, S.

D. Lauvernier, S. Garidel, C. Legrand, and J.-P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask,” Microelectron. Eng. 77(3-4), 210–216 (2005).
[Crossref]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Gogolides, E.

A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
[Crossref]

Graf, T.

Gu, C.

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Gupta, K.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing part II,” J. Microelectromech. Syst. 12(6), 6 (2003).
[Crossref]

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Hayes, T. R.

B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
[Crossref]

Healy, K.

I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
[Crossref] [PubMed]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Jetter, M.

Jiang, H.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Jin, A.

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Johnson, D. G.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Kahle, H.

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Kauppinen, E. I.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Kawaguchi, H.

S. Adachi and H. Kawaguchi, “Chemical etching characteristics of (001) InP,” J. Electrochem. Soc. 128(6), 1342 (1981).
[Crossref]

Khire, T. S.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Kim, K.-B.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

Klingfus, J.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Kokkoris, G.

A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
[Crossref]

Lauvernier, D.

D. Lauvernier, S. Garidel, C. Legrand, and J.-P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask,” Microelectron. Eng. 77(3-4), 210–216 (2005).
[Crossref]

Lee, B.-T.

B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Legrand, C.

D. Lauvernier, S. Garidel, C. Legrand, and J.-P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask,” Microelectron. Eng. 77(3-4), 210–216 (2005).
[Crossref]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Li, J.

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

Lippens, D.

P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
[Crossref]

Luo, Q.

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

Lyubarskaya, Y. L.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Mateo, C. M. N.

McGrath, J. L.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Melique, X.

P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
[Crossref]

Michler, P.

Mounaix, P.

P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
[Crossref]

Nakamura, K.

D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, “Micro/nano-mechanical sensors and actuators based on SOI-MEMs technology,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 013001 (2010).

Nam, S.-W.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Nassiopoulu, A. G.

A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
[Crossref]

Ning, C. Z.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Patil, Y. S.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112(12), 127201 (2014).
[Crossref] [PubMed]

Pawelek, R.

B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
[Crossref]

Prunnila, M.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Rooks, M. J.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Schneider, L.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Sciortino, P. F.

B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
[Crossref]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Shchepetove, A.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Shestopalov, A. A.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Siwy, Z. S.

I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
[Crossref] [PubMed]

Smith, K. J. P.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Sotomayor Torres, C. M.

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Striemer, C. C.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Sugiyama, S.

D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, “Micro/nano-mechanical sensors and actuators based on SOI-MEMs technology,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 013001 (2010).

Tatar-Mathes, P.

Taylor, J. G.

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Thomas, P. M.

B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
[Crossref]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Tsamis, C.

A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
[Crossref]

Tserepi, A.

A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

van Delft, F. C. M. J. M.

F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20(6), 2932 (2002).
[Crossref]

Vengalattore, M.

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112(12), 127201 (2014).
[Crossref] [PubMed]

Vilcot, J.-P.

D. Lauvernier, S. Garidel, C. Legrand, and J.-P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask,” Microelectron. Eng. 77(3-4), 210–216 (2005).
[Crossref]

Vlassiouk, I.

I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
[Crossref] [PubMed]

von Neumann, J.

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 467 (1929).

Wasilik, M.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing part II,” J. Microelectromech. Syst. 12(6), 6 (2003).
[Crossref]

Wigner, E.

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 467 (1929).

Williams, K. R.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing part II,” J. Microelectromech. Syst. 12(6), 6 (2003).
[Crossref]

Yang, H.

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

Yang, J. K. W.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Adv. Chronic Kidney Dis. (1)

D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J.-P. S. Desormeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, C. C. Striemer, and J. L. McGrath, “Ultrathin silicon membranes for wearable dialysis,” Adv. Chronic Kidney Dis. 20(6), 508–515 (2013).
[Crossref] [PubMed]

Adv. Nat. Sci.: Nanosci. Nanotechnol. (1)

D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, “Micro/nano-mechanical sensors and actuators based on SOI-MEMs technology,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 013001 (2010).

Appl. Phys. Lett. (2)

A. Shchepetove, M. Prunnila, F. Alzine, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. Sotomayor Torres, and J. Ahopelto, “Ultra-thin free-standing single crystalline silicon membranes with strain control,” Appl. Phys. Lett. 102(19), 192108 (2013).
[Crossref]

B.-T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino., “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Appl. Phys. Lett. 63(23), 3170–3172 (1993).
[Crossref]

J. Electrochem. Soc. (1)

S. Adachi and H. Kawaguchi, “Chemical etching characteristics of (001) InP,” J. Electrochem. Soc. 128(6), 1342 (1981).
[Crossref]

J. Microelectromech. Syst. (1)

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing part II,” J. Microelectromech. Syst. 12(6), 6 (2003).
[Crossref]

J. Micromech. Microeng. (1)

A. Tserepi, C. Tsamis, G. Kokkoris, E. Gogolides, and A. G. Nassiopoulu, “Fabrication of suspended thermally insulating membranes using frontside micromachining of the Si substrate: characterization of the etching process,” J. Micromech. Microeng. 13(2), 323–329 (2003).
[Crossref]

J. Vac. Sci. Technol. B (3)

F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20(6), 2932 (2002).
[Crossref]

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622 (2009).
[Crossref]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, and A. Y. Cho, “Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes,” J. Vac. Sci. Technol. B 22(3), 875 (2004).
[Crossref]

Mater. Sci. Eng. B (1)

P. Mounaix, P. Delobelle, X. Melique, L. Bornier, and D. Lippens, “Micromachining and mechanical properties of GaInAs/InP microcantilevers,” Mater. Sci. Eng. B 51(1-3), 258–262 (1998).
[Crossref]

Microelectron. Eng. (2)

H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, “Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process,” Microelectron. Eng. 85(5-6), 814–817 (2008).
[Crossref]

D. Lauvernier, S. Garidel, C. Legrand, and J.-P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask,” Microelectron. Eng. 77(3-4), 210–216 (2005).
[Crossref]

Nat. Photonics (1)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Nat. Rev. Mater. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Nature (4)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (2)

S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” Phys. Rev. Lett. 112(12), 127201 (2014).
[Crossref] [PubMed]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Phys. Z. (1)

J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z. 30, 467 (1929).

Proc. Natl. Acad. Sci. U.S.A. (1)

I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healy, and Z. S. Siwy, “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21039–21044 (2009).
[Crossref] [PubMed]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

Other (5)

C. Youtsey and I. Adesida, Dry Etching of InP and Related Materials, in Handbook of Advanced Plasma Processing Techniques (Springer, 2000), pp. 479–483.

S. Mendoza-Acevedo, M. A. Reyes-Barranca, E. N. Vazquez-Acosta, J. A. Moreno-Cadenas, and J. L. Gonzalez-Vidal, Micromachining Techniques for Fabrication of Micro and Nano Structures(InTech, 2012), Chapter 9.

T. Lepetit and B. Kante, “Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum,” Phys. Rev. B 90, 241103(R) (2014).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals – Molding the Flow of Light, 2nd Edition, Princeton (N.J.), Princeton University Press, 2008.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd Ed (Wiley, 2012), Chapter 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of epitaxially grown InGaAsP layers on InP substrate with nine quantum wells (in red). (b) Top view of laser membrane with cylindrical resonators arranged in a square lattice interconnected by bridges and a secondary outer pad. (c) Tilted view of the membrane with a magnified view of the cylindrical resonators with radius (R), thickness (H = 300 nm), and period (P = 1.2 μm).

Fig. 2
Fig. 2

Device fabrication process without a metal hard mask starting with the epitaxially grown multiple quantum wells on InP substrate and ending with the nanocylinders suspended membrane (a-g). Note that the bridges connecting the cylinders are intentionally drawn thinner as a guide to the eye. Both the bridges and the cylinders are of the same thickness.

Fig. 3
Fig. 3

Device fabrication process involving a metal hard mask, starting with the epitaxially grown multiple quantum wells on InP substrate (a-f). The subsequent membrane release process is the same for both processes: with and without a metal hard mask (Fig. 2(e)-(g)). Note that the bridges connecting the cylinders are intentionally drawn thinner as a guide to the eye. Both the bridges and the cylinders are of the same thickness.

Fig. 4
Fig. 4

Electron micrograph images of Reactive Ion Etching (RIE) of InGaAsP/InP test patterns. Method I: Side view after dry etch with HSQ as etch mask (a) and after HSQ removal (b). Method II: Side view after dry etch with an added Cr hard mask (c) and after mask removal (d). Both were dry etched to a depth of 950 nm. The sidewall erosion is visible with a HSQ hard mask (a) compared to an added Cr hard mask (b). An undercut in the PMMA layer below the Cr is also observed.

Fig. 5
Fig. 5

Reduction in bridge widths, W, from the nominal bridge widths as a function of the nominal radius for (a) Method I: HSQ mask and (b) Method II: added Cr mask. Left inset is a schematic of cylindrical resonators of radius, R, with interconnected bridges with widths, W. Right insets are images of the finished devices. The vertical error bars are the standard error in the measurement of the bridge widths. With a HSQ mask, the bridge reduction is worse than with an added Cr mask. However, in both cases, the bridge reduction is greatest (lowest) when the cylinder radius is small (large). With small radii cylinders and for a fixed periodicity, there is more access to the sides of the bridges for the dry etch gases. This contributes to an increased sidewall erosion and thus thinner bridges.

Fig. 6
Fig. 6

Etch requirements and optimization of membrane release. (a) Dependence of InP dry-etch depth on the crystallographic selective wet-etching of InP. The etch is halted by the slowest set of etch planes, indium (In)-rich {111} planes of InP sloped at 55°. Therefore, the total dry-etch depth (h) required for adjoining {111} planes to meet and fully suspend the InGaAsP membrane of thickness (t) is: hRtan( 55° )+t (b) Three different wet-etch windows for membrane release: i. rectangular windows with opening widths (2P) in white and supporting arms (2.5P) in blue, both indicated by black arrows, ii. trapezoidal windows with thick supporting arms (3P) and trapezoidal opening widths (4P), iii. trapezoidal windows with thin supporting arms (P) and opening widths (4P) with P = 1.2 μm. (c-f) Electron micrograph images of completed fabrication for different etch windows and etch conditions. (c) Two 10x10 arrays with rectangular etching windows where both are dry-etched for an etch depth of 600 nm and subsequently wet-etched for 1 min 30 sec in HCl:H2O (3:1) solution. (i.) Collapsed array with measured cylindrical radii of 440 nm after wet etching and (ii.) equivalent array with larger measured radii of 540 nm with halted etch due to formation of etch pits along {111} plane of InP. (d) Array with trapezoidal etch window with a halted etch due to thick supporting arms of InGaAsP indicated by outer white arrows and halted InP etch underneath indicated by second pair of white arrows. There are visible etch pits between the cylindrical resonators. All the etch pits remain even after a prolonged wet-etch of 4 min. (e) Successfully suspended array with trapezoidal etch window due to the thinner supporting arms (white arrows) which was wet-etched for a total of 2 min 18 sec. A visibly large V-groove runs underneath the fully released membrane along the {011} direction.

Fig. 7
Fig. 7

Electron micrograph images of completed membrane structures with 10x10 cylindrical resonators interconnected by a network of bridges with a visible etch pit below in the InP substrate for HSQ etch mask (a) and added Cr hard mask (c). Respective zoom-in images of two cylinders at the center of the array (b, d). As seen, the cylinders fabricated with the Cr hard mask maintain the mask dimensions with straighter sidewalls whereas with the HSQ mask both the cylinders and bridges shrink drastically with sloped sidewalls.

Fig. 8
Fig. 8

Lasing from fully suspended devices fabricated using a HSQ hard mask (a) and a Cr hard mask (b). Both devices are 10x10 arrays optically pump at 1064 nm and operating at room temperature as seen by IR camera during testing (left insets). (a) Light-Light (LL) curve of the laser fabricated using a HSQ hard mask emitting at 1567 nm (right inset) with a threshold of 67 μW (vertical dotted line). (b) LL curve for a laser fabricated using a Cr hard mask emitting at 1540 nm (right inset) with a threshold of 89 μW. (c) Schematic of photoluminescence setup for the characterization of membrane lasers with a pulsed pump (1064 nm) path in blue and emission/imaging path in red with a CCD camera, a monochromator, and an InGaAs detector tied to a lock-in amplifier. A microscope objective (NA = 0.4) and L1 to L8 correspond to the lens assembly to the sample.

Tables (2)

Tables Icon

Table 1 Original dimensions of bridge widths and radii defined for HSQ and Cr processes

Tables Icon

Table 2 Summary of wet etch windows and their dimensions for membrane release

Metrics