Abstract

We demonstrate a novel 2-step method to precisely determine both n and k of phosphors, luminescent inorganic particles, in the visible spectrum. To measure n we modified the Becke Line immersion method and verified its applicability in the absorption/ emission regions of phosphor particles (step 1). Particles were then embedded into a transparent binder and coated in thick layers (100-500 µm) on glass. Absorptance of the layers was measured with a novel approach: spectral angular resolved measurements. This method delivers accurate results by avoiding any errors from intense scattering inside the layers. A computational model was employed to extract k of particles from the measured absorptance data taking into account luminescence, scattering and re-absorption (step 2). The entire method was verified on reference materials. Finally, based on the proposed method, we determined in a broad wavelength range the n and k parameters for a variety of commonly used phosphors with few or no earlier reports on their n and k values (the complete set of numerical data is fully disclosed in the supplementary materials).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics

Anastasiia Solodovnyk, Karen Forberich, Edda Stern, Janez Krč, Marko Topič, Miroslaw Batentschuk, Benjamin Lipovšek, and Christoph J. Brabec
Opt. Mater. Express 5(6) 1296-1305 (2015)

Optical sensing of concentration and refractive index of pigments in a suspension

Ilpo Niskanen, Jukka Räty, and Kai-Erik Peiponen
Appl. Opt. 49(17) 3428-3433 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Shinkichi, “Principal phosphor materials and their optical properties,” in Phosphor Handbook (CRC Press, 2006).
  2. E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
    [Crossref]
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  4. R. Hu and X. Luo, “A model for calculating the bidirectional scattering properties of phosphor layer in white light-emitting diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
    [Crossref]
  5. S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
    [Crossref]
  6. Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Appl. Opt. 49(2), 247–257 (2010).
    [Crossref] [PubMed]
  7. E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
    [Crossref] [PubMed]
  8. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
    [Crossref] [PubMed]
  9. X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
    [Crossref]
  10. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
    [Crossref]
  11. T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
    [Crossref] [PubMed]
  12. P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
    [Crossref] [PubMed]
  13. J.-P. Moy, “Recent developments in X-ray imaging detectors,” Nucl. Instrum. Methods Phys. Res. 442(1-3), 26–37 (2000).
    [Crossref]
  14. L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
    [Crossref] [PubMed]
  15. C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
    [Crossref] [PubMed]
  16. A. Solodovnyk, K. Forberich, E. Stern, J. Krč, M. Topič, M. Batentschuk, B. Lipovšek, and C. J. Brabec, “Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Mater. Express 5(6), 1296–1305 (2015).
    [Crossref]
  17. B. Lipovšek, A. Solodovnyk, K. Forberich, E. Stern, J. Krč, C. J. Brabec, and M. Topič, “Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Express 23(15), A882–A895 (2015).
    [Crossref] [PubMed]
  18. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  19. W. Heller, “The Determination of Refractive Indices of Colloidal Particles by Means of a New Mixture Rule or from Measurements of Light Scattering,” Phys. Rev. 68(1-2), 5–10 (1945).
    [Crossref]
  20. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
  21. H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
    [Crossref] [PubMed]
  22. B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
    [Crossref]
  23. G. David, K. Esat, I. Ritsch, and R. Signorell, “Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles,” Phys. Chem. Chem. Phys. 18(7), 5477–5485 (2016).
    [Crossref] [PubMed]
  24. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
    [Crossref]
  25. A. B. Pluchino, S. S. Goldberg, J. M. Dowling, and C. M. Randall, “Refractive-index measurements of single micron-sized carbon particles,” Appl. Opt. 19(19), 3370–3372 (1980).
    [Crossref] [PubMed]
  26. W. D. Dick, P. J. Ziemann, and P. H. McMurry, “Multiangle Light-Scattering Measurements of Refractive Index of Submicron Atmospheric Particles,” Aerosol Sci. Technol. 41(5), 549–569 (2007).
    [Crossref]
  27. R. A. Carlton, “Polarized Light Microscopy,” in Pharmaceutical Microscopy (Springer-Verlag, 2011), pp. 7–64.
  28. K. Spangenberg, “Die Einbettungsmethode,” Fortschr. Mineral. 7, 4–64 (1922).
  29. F. D. Bloss, Optical Crystallography (Mineralogical Society of America Monograph Series, 1999), p. 239.
  30. K. Strohmaier, “Photometrische Untersuchung der Beugungs- und Abbildungsvorgänge an Phasenobjekten,” Dissertation (Eberhards-Karls-Universität zu Tübingen, 1952).
  31. H. Tertsch, “Die Beckesche Lichtlinie,” Zentralblatt für Mikroskopische Forschung und Methodik 4, 296–307 (1949).
  32. C. M. Keck, “Cyclosporine nanosuspensions,” Doctorate Disseration (Freie Universität Berlin, 2006).
  33. R. Rath, “Fortschritte der Kristalldiagnose im Durchlicht,” Fortschr. Mineral. 46, 73–86 (1969).
  34. R. C. Faust, “Refractive Index Determinations by the Central Illumination (Becke Line) Method,” Proc. Phys. Soc. B 68(12), 1081–1094 (1955).
    [Crossref]
  35. F. Rinne and M. Berek, “Bestimmung der Lichtbrechung,” in Anleitung zur allgemeinen und Polarisations-Mikroskopie der Festkörper im Durchlicht, H. Schumann and F. Kornder, eds. (Schweizerbart Science Publishers, 1973), pp. 112–127.
  36. G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
    [Crossref]
  37. R. Hu, X. Luo, H. Zheng, and S. Liu, “Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package,” Frontiers of Optoelectronics 5(2), 138–146 (2012).
    [Crossref]
  38. S. Leyre, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Experimental determination of the absorption and scattering properties of YAG:Ce phosphor,” in Light, Energy and the Environment (Optical Society of America, Canberra, 2014), p. DTu4C.4.
  39. L. Yang and B. Kruse, “Revised Kubelka-Munk theory. I. Theory and application,” J. Opt. Soc. Am. A 21(10), 1933–1941 (2004).
    [Crossref] [PubMed]
  40. B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side = Opticni model za tankoplastne fotonapetostne strukture z velikimi povrsinskimi teksturami na sprednji strani,” In Informacije MIDEM,264–271 (2011).
  41. A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).
  42. A. Solodovnyk, ZAE Bayern, Immerwahrstr. 2, 91058 Erlangen, and B. Lipovšek, D. Riedel, K. Forberich, E. Stern, M. Batenschuk, J. Krč, M. Topič, C. J. Brabec are preparing a manuscript to be called “Key Parameters of Efficient Phosphor-Filled Luminescent Down-Shifting Layers for Photovoltaics.”
  43. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
    [Crossref]
  44. M. Polyanskiy, “Refractive index database” (2016), retrieved 13.04.2016, http://refractiveindex.info/ .
  45. M. J. Dodge, I. H. Malitson, and A. I. Mahan, “A Special Method for Precise Refractive Index Measurement of Uniaxial Optical Media,” Appl. Opt. 8(8), 1703–1705 (1969).
    [Crossref] [PubMed]
  46. D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes,” Org. Electron. 32, 27–33 (2016).
    [Crossref]
  47. E. D. Palik, “Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region,” in Handbook of Optical Constants of Solids, W. R. Hunter, ed. (Academic Press, 1985), pp. 69–88.
  48. “Optical Data from Sopra S.A.,” (Software Spectra Inc., 2008).
  49. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
    [Crossref]
  50. K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
    [Crossref]

2016 (3)

C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
[Crossref] [PubMed]

G. David, K. Esat, I. Ritsch, and R. Signorell, “Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles,” Phys. Chem. Chem. Phys. 18(7), 5477–5485 (2016).
[Crossref] [PubMed]

D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes,” Org. Electron. 32, 27–33 (2016).
[Crossref]

2015 (3)

2014 (3)

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).

2013 (2)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

2012 (4)

R. Hu and X. Luo, “A model for calculating the bidirectional scattering properties of phosphor layer in white light-emitting diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
[Crossref]

H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
[Crossref] [PubMed]

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

R. Hu, X. Luo, H. Zheng, and S. Liu, “Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package,” Frontiers of Optoelectronics 5(2), 138–146 (2012).
[Crossref]

2011 (1)

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
[Crossref]

2007 (1)

W. D. Dick, P. J. Ziemann, and P. H. McMurry, “Multiangle Light-Scattering Measurements of Refractive Index of Submicron Atmospheric Particles,” Aerosol Sci. Technol. 41(5), 549–569 (2007).
[Crossref]

2006 (1)

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

2004 (2)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

L. Yang and B. Kruse, “Revised Kubelka-Munk theory. I. Theory and application,” J. Opt. Soc. Am. A 21(10), 1933–1941 (2004).
[Crossref] [PubMed]

2001 (1)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

2000 (1)

J.-P. Moy, “Recent developments in X-ray imaging detectors,” Nucl. Instrum. Methods Phys. Res. 442(1-3), 26–37 (2000).
[Crossref]

1999 (1)

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

1997 (1)

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

1993 (1)

T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
[Crossref] [PubMed]

1980 (1)

1976 (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

1969 (2)

1955 (1)

R. C. Faust, “Refractive Index Determinations by the Central Illumination (Becke Line) Method,” Proc. Phys. Soc. B 68(12), 1081–1094 (1955).
[Crossref]

1949 (1)

H. Tertsch, “Die Beckesche Lichtlinie,” Zentralblatt für Mikroskopische Forschung und Methodik 4, 296–307 (1949).

1945 (1)

W. Heller, “The Determination of Refractive Indices of Colloidal Particles by Means of a New Mixture Rule or from Measurements of Light Scattering,” Phys. Rev. 68(1-2), 5–10 (1945).
[Crossref]

1922 (1)

K. Spangenberg, “Die Einbettungsmethode,” Fortschr. Mineral. 7, 4–64 (1922).

Appleby, G. A.

G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
[Crossref]

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Barnea, G.

T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
[Crossref] [PubMed]

Batentschuk, M.

A. Solodovnyk, K. Forberich, E. Stern, J. Krč, M. Topič, M. Batentschuk, B. Lipovšek, and C. J. Brabec, “Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Mater. Express 5(6), 1296–1305 (2015).
[Crossref]

A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Borchardt, R.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Boss, E.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Brabec, C. J.

D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes,” Org. Electron. 32, 27–33 (2016).
[Crossref]

A. Solodovnyk, K. Forberich, E. Stern, J. Krč, M. Topič, M. Batentschuk, B. Lipovšek, and C. J. Brabec, “Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Mater. Express 5(6), 1296–1305 (2015).
[Crossref]

B. Lipovšek, A. Solodovnyk, K. Forberich, E. Stern, J. Krč, C. J. Brabec, and M. Topič, “Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Express 23(15), A882–A895 (2015).
[Crossref] [PubMed]

A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Bugrov, V. E.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Cavouras, D. A.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Danielson, E.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

David, G.

G. David, K. Esat, I. Ritsch, and R. Signorell, “Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles,” Phys. Chem. Chem. Phys. 18(7), 5477–5485 (2016).
[Crossref] [PubMed]

Delis, H. B.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

DenBaars, S. P.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Dick, W. D.

W. D. Dick, P. J. Ziemann, and P. H. McMurry, “Multiangle Light-Scattering Measurements of Refractive Index of Submicron Atmospheric Particles,” Aerosol Sci. Technol. 41(5), 549–569 (2007).
[Crossref]

Do, Y. R.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
[Crossref] [PubMed]

Dodge, M. J.

Dowling, J. M.

Drozdowski, W.

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Esat, K.

G. David, K. Esat, I. Ritsch, and R. Signorell, “Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles,” Phys. Chem. Chem. Phys. 18(7), 5477–5485 (2016).
[Crossref] [PubMed]

Faust, R. C.

R. C. Faust, “Refractive Index Determinations by the Central Illumination (Becke Line) Method,” Proc. Phys. Soc. B 68(12), 1081–1094 (1955).
[Crossref]

Forberich, K.

Goldberg, S. S.

Golden, J. H.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Grinberg, M.

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Han, B.

C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
[Crossref] [PubMed]

Hecht, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Heller, W.

W. Heller, “The Determination of Refractive Indices of Colloidal Particles by Means of a New Mixture Rule or from Measurements of Light Scattering,” Phys. Rev. 68(1-2), 5–10 (1945).
[Crossref]

Henß, A.-K.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Hesse, S.

G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
[Crossref]

Hollmann, A.

A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).

Hu, R.

R. Hu, X. Luo, H. Zheng, and S. Liu, “Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package,” Frontiers of Optoelectronics 5(2), 138–146 (2012).
[Crossref]

R. Hu and X. Luo, “A model for calculating the bidirectional scattering properties of phosphor layer in white light-emitting diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
[Crossref]

Huang, X.

X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Kaczmarek, S.

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Kandarakis, I. S.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Karg, O.

G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
[Crossref]

Kisielewski, J.

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Klupp Taylor, R.

A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).

Koepke, C.

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Kovsh, A. R.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Krc, J.

Kruse, B.

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Liaparinos, P. F.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Lipnitskaya, S. N.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Lipovšek, B.

Liu, F.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, S.

R. Hu, X. Luo, H. Zheng, and S. Liu, “Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package,” Frontiers of Optoelectronics 5(2), 138–146 (2012).
[Crossref]

Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Appl. Opt. 49(2), 247–257 (2010).
[Crossref] [PubMed]

Liu, Z.

Lu, Y.-Y.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Luo, X.

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Mahan, A. I.

Malitson, I. H.

McFarland, E. W.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

McMurry, P. H.

W. D. Dick, P. J. Ziemann, and P. H. McMurry, “Multiangle Light-Scattering Measurements of Refractive Index of Submicron Atmospheric Particles,” Aerosol Sci. Technol. 41(5), 549–569 (2007).
[Crossref]

Mi, C.

C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
[Crossref] [PubMed]

Moon, B. K.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
[Crossref] [PubMed]

Moy, J.-P.

J.-P. Moy, “Recent developments in X-ray imaging detectors,” Nucl. Instrum. Methods Phys. Res. 442(1-3), 26–37 (2000).
[Crossref]

Mynbaev, K. D.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Odnoblyudov, M. A.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Oh, J. H.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
[Crossref] [PubMed]

Oh, J. R.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

Osvet, A.

A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).

Pan, Z.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Panayiotakis, G. S.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Park, B. K.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

Park, H. K.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
[Crossref] [PubMed]

Park, J. Y.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
[Crossref] [PubMed]

Pavitra, E.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
[Crossref] [PubMed]

Pegau, W. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Pluchino, A. B.

Pust, P.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Radcliffe, T.

T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
[Crossref] [PubMed]

Rajapakshe, R.

T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
[Crossref] [PubMed]

Raju, G. S. R.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
[Crossref] [PubMed]

Randall, C. M.

Rath, R.

R. Rath, “Fortschritte der Kristalldiagnose im Durchlicht,” Fortschr. Mineral. 46, 73–86 (1969).

Reaves, C. M.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Reusch, T. C. G.

D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes,” Org. Electron. 32, 27–33 (2016).
[Crossref]

Riedel, D.

D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes,” Org. Electron. 32, 27–33 (2016).
[Crossref]

Ritsch, I.

G. David, K. Esat, I. Ritsch, and R. Signorell, “Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles,” Phys. Chem. Chem. Phys. 18(7), 5477–5485 (2016).
[Crossref] [PubMed]

Romanov, A. E.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Scheiner, S.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Scheu, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schmidt, M. A.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Schmidt, P. J.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schnick, W.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schweizer, P.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Seemann, B.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Shalev, S.

T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
[Crossref] [PubMed]

Signorell, R.

G. David, K. Esat, I. Ritsch, and R. Signorell, “Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles,” Phys. Chem. Chem. Phys. 18(7), 5477–5485 (2016).
[Crossref] [PubMed]

Solodovnyk, A.

Spangenberg, K.

K. Spangenberg, “Die Einbettungsmethode,” Fortschr. Mineral. 7, 4–64 (1922).

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Stern, E.

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Tertsch, H.

H. Tertsch, “Die Beckesche Lichtlinie,” Zentralblatt für Mikroskopische Forschung und Methodik 4, 296–307 (1949).

Topic, M.

Tücks, A.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

von Seggern, H.

G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
[Crossref]

Wang, K.

Wang, L.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
[Crossref] [PubMed]

Wehlus, T.

D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes,” Org. Electron. 32, 27–33 (2016).
[Crossref]

Wei, J.

C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
[Crossref] [PubMed]

Weiler, V.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Weinberg, W. H.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Wiechert, D.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wisniewski, K.

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Wochnik, A. S.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wojtowicz, A.

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Wondraczek, L.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Wowk, B.

T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
[Crossref] [PubMed]

Wu, J.

C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
[Crossref] [PubMed]

Wu, X. D.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Yang, L.

Yang, Y.

C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
[Crossref] [PubMed]

Yu, J. S.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
[Crossref] [PubMed]

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Zheng, H.

R. Hu, X. Luo, H. Zheng, and S. Liu, “Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package,” Frontiers of Optoelectronics 5(2), 138–146 (2012).
[Crossref]

Ziemann, P. J.

W. D. Dick, P. J. Ziemann, and P. H. McMurry, “Multiangle Light-Scattering Measurements of Refractive Index of Submicron Atmospheric Particles,” Aerosol Sci. Technol. 41(5), 549–569 (2007).
[Crossref]

Zimmermann, J.

G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
[Crossref]

Acta Phys. Pol. A (1)

K. Wiśniewski, C. Koepke, A. Wojtowicz, W. Drozdowski, M. Grinberg, S. Kaczmarek, and J. Kisielewski, “Excited State Absorption and Thermoluminescence in Ce and Mg Doped Yttrium Aluminum Garnet,” Acta Phys. Pol. A 95(3), 403–412 (1999).
[Crossref]

Aerosol Sci. Technol. (1)

W. D. Dick, P. J. Ziemann, and P. H. McMurry, “Multiangle Light-Scattering Measurements of Refractive Index of Submicron Atmospheric Particles,” Aerosol Sci. Technol. 41(5), 549–569 (2007).
[Crossref]

Appl. Opt. (3)

Fortschr. Mineral. (2)

K. Spangenberg, “Die Einbettungsmethode,” Fortschr. Mineral. 7, 4–64 (1922).

R. Rath, “Fortschritte der Kristalldiagnose im Durchlicht,” Fortschr. Mineral. 46, 73–86 (1969).

Frontiers of Optoelectronics (1)

R. Hu, X. Luo, H. Zheng, and S. Liu, “Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package,” Frontiers of Optoelectronics 5(2), 138–146 (2012).
[Crossref]

J. Cryst. Growth (1)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

J. Electrochem. Soc. (1)

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

J. Geophys. Res. (1)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Sci. Mater. Electron. (1)

G. A. Appleby, J. Zimmermann, S. Hesse, O. Karg, and H. von Seggern, “Sensitization and radiation hardening of the photostimulable X-ray storage phosphor CsBr:Eu2+,” J. Mater. Sci. Mater. Electron. 20(S1), 54–58 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Med. Phys. (2)

T. Radcliffe, G. Barnea, B. Wowk, R. Rajapakshe, and S. Shalev, “Monte Carlo optimization of metal/phosphor screens at megavoltage energies,” Med. Phys. 20(4), 1161–1169 (1993).
[Crossref] [PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

X. Huang, “Solid-state lighting: Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Nature (1)

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

J.-P. Moy, “Recent developments in X-ray imaging detectors,” Nucl. Instrum. Methods Phys. Res. 442(1-3), 26–37 (2000).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Org. Electron. (1)

D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes,” Org. Electron. 32, 27–33 (2016).
[Crossref]

Phys. Chem. Chem. Phys. (1)

G. David, K. Esat, I. Ritsch, and R. Signorell, “Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles,” Phys. Chem. Chem. Phys. 18(7), 5477–5485 (2016).
[Crossref] [PubMed]

Phys. Rev. (1)

W. Heller, “The Determination of Refractive Indices of Colloidal Particles by Means of a New Mixture Rule or from Measurements of Light Scattering,” Phys. Rev. 68(1-2), 5–10 (1945).
[Crossref]

Proc. Phys. Soc. B (1)

R. C. Faust, “Refractive Index Determinations by the Central Illumination (Becke Line) Method,” Proc. Phys. Soc. B 68(12), 1081–1094 (1955).
[Crossref]

Proc. SPIE (1)

A. Solodovnyk, A. Hollmann, A. Osvet, K. Forberich, E. Stern, M. Batentschuk, R. Klupp Taylor, and C. J. Brabec, “Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics,” Proc. SPIE 91078, 9107806 (2014).

Sci. Rep. (2)

C. Mi, J. Wu, Y. Yang, B. Han, and J. Wei, “Efficient upconversion luminescence from Ba5Gd8Zn4O21:Yb3+, Er3+ based on a demonstrated cross-relaxation process,” Sci. Rep. 6(1), 22545 (2016).
[Crossref] [PubMed]

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)(6) phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5(1), 10296 (2015).
[Crossref] [PubMed]

Tech. Phys. Lett. (1)

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Zentralblatt für Mikroskopische Forschung und Methodik (1)

H. Tertsch, “Die Beckesche Lichtlinie,” Zentralblatt für Mikroskopische Forschung und Methodik 4, 296–307 (1949).

Other (14)

C. M. Keck, “Cyclosporine nanosuspensions,” Doctorate Disseration (Freie Universität Berlin, 2006).

F. D. Bloss, Optical Crystallography (Mineralogical Society of America Monograph Series, 1999), p. 239.

K. Strohmaier, “Photometrische Untersuchung der Beugungs- und Abbildungsvorgänge an Phasenobjekten,” Dissertation (Eberhards-Karls-Universität zu Tübingen, 1952).

F. Rinne and M. Berek, “Bestimmung der Lichtbrechung,” in Anleitung zur allgemeinen und Polarisations-Mikroskopie der Festkörper im Durchlicht, H. Schumann and F. Kornder, eds. (Schweizerbart Science Publishers, 1973), pp. 112–127.

S. Leyre, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Experimental determination of the absorption and scattering properties of YAG:Ce phosphor,” in Light, Energy and the Environment (Optical Society of America, Canberra, 2014), p. DTu4C.4.

R. A. Carlton, “Polarized Light Microscopy,” in Pharmaceutical Microscopy (Springer-Verlag, 2011), pp. 7–64.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).

T. Shinkichi, “Principal phosphor materials and their optical properties,” in Phosphor Handbook (CRC Press, 2006).

A. Solodovnyk, ZAE Bayern, Immerwahrstr. 2, 91058 Erlangen, and B. Lipovšek, D. Riedel, K. Forberich, E. Stern, M. Batenschuk, J. Krč, M. Topič, C. J. Brabec are preparing a manuscript to be called “Key Parameters of Efficient Phosphor-Filled Luminescent Down-Shifting Layers for Photovoltaics.”

B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side = Opticni model za tankoplastne fotonapetostne strukture z velikimi povrsinskimi teksturami na sprednji strani,” In Informacije MIDEM,264–271 (2011).

E. D. Palik, “Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region,” in Handbook of Optical Constants of Solids, W. R. Hunter, ed. (Academic Press, 1985), pp. 69–88.

“Optical Data from Sopra S.A.,” (Software Spectra Inc., 2008).

M. Polyanskiy, “Refractive index database” (2016), retrieved 13.04.2016, http://refractiveindex.info/ .

Supplementary Material (3)

NameDescription
» Data File 1       Measured refractive index n of phosphors
» Data File 2       Sellmeier coefficients for n dispersions in the spectral region 370-700 nm
» Data File 3       k of phosphors in the spectral region 300-525 nm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical microscopy image of Lu3Al5O12:Ce3+ under λ = 595 nm embedded in liquid nD = 1.7 with (a) particles in focus; (b) table moved down = > distance larger than the focal distance; (c) table moved up = > distance smaller that the focal distance. Bright field illumination, scale bar shows 50 µm.
Fig. 2
Fig. 2 Results of the measurements of n for (a) Al2O3:Cr3+ and (b) NaCl. Stars with error bars (SD of min. 14 measurements ˂0.0015) indicate results from measurements. black dashed lines are Sellmeier’s fits to them. Blue area shows excitation and red area – emission of Al2O3:Cr3+. Grey symbols are measured n values for ordinary and extraordinary rays in Al2O3:Cr3+ with various Cr2O3 concentrations [45]. Orange lines are n dispersions from literature for Al2O3 [44] and NaCl [43]. Inset: absolute difference in values between the literature data and measurements (fits with Sellmeier’s equation), calculated as “nliterature – nmeasured”.
Fig. 3
Fig. 3 Comparison of the UV-Vis (dashed lines) and SARS (solid lines) measurements of the layers on glass with (a) TiO2 nanoparticles (thickness 2 µm); (b) Lu3Al5O12:Ce3+ phosphor particles (thickness 184 µm) of total transmittance (Ttot, grey), total reflectance (Rtot, red) and sum of both (Ttot + Rtot, black). Spectral areas of reliably measured data by one of the systems are marked accordingly.
Fig. 4
Fig. 4 The total transmittance of (a) TiO2-, (c) Lu3Al5O12:Ce3+-, and (d) Ba2SiO4:Eu2+-filled layers with varied thicknesses measured by the SARS system (solid black, red, grey respectively) and simulated by the model, using the determined complex refractive index data (dashed lines). Particle volume concentration in all the layers was 6 vol. %. (b) k dispersion extraction results of TiO2 particles obtained by the optical model, compared to the data from various literature sources [47, 48].
Fig. 5
Fig. 5 Results of the complex refractive index measurements for (a) Lu3Al5O12:Ce3+, (b) Ba2SiO4:Eu2+, (c) Ba3MgSi2O8:Eu2+,Mn2+ and (d) SrAl2O4:Eu2+ phosphors. Stars with red error bars (SD of min. 14 measurements ˂0.0015) indicate n results from Becke Line measurements and their standard deviation, black lines are Sellmeier’s fits to them. Grey areas shows k results. Blue and red dotted lines show excitation and emission spectra respectively. Orange line and circles in (a) are measured data and dispersion fit from literature [49].

Tables (1)

Tables Icon

Table 1 List of phosphors and reference materials that were used for n determination with the Becke Line measurement method. Precise material composition and dopant concentration were unknown in all cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ )=1+ B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3

Metrics