Abstract

With combined lifetime and intensity spectra in time-resolved photoluminescence (PL) spectroscopy, the origins of a green PL band consisting of a 2.39eV-band with lifetime ~10μs and a 2.25eV-band with lifetime ~50μs, of high-purity fused silica under ArF excimer laser (6.4eV) excitation were revealed. The 2.39eV PL defects from the surface were annealed due to the deoxidation of the dioxasilyrane group ( = SiO2). The 2.25eV PL defects from bulk showed a UV induced growth. Mechanical and laser damage induced growth of the 2.25eV PL band confirmed that it was due to physical disorder from bending of Si-O-Si bonds. Theoretical calculations further assigned the 2.25eV PL band to silanone groups ( = Si = O), which can be created by relaxation process of strained Si-O bonds in SiO2 network.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved photoluminescence for diagnosis of resistance to ArF excimer laser damage to CaF2 single crystals

Masafumi Mizuguchi, Hideo Hosono, Hiroshi Kawazoe, and Tohru Ogawa
J. Opt. Soc. Am. B 16(7) 1153-1159 (1999)

Evidence of a green luminescence band related to surface flaws in high purity silica glass

J. Fournier, J. Néauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot
Opt. Express 18(21) 21557-21566 (2010)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).
    [Crossref]
  2. C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
    [Crossref]
  3. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  4. L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
    [Crossref] [PubMed]
  5. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
    [Crossref] [PubMed]
  6. C. Mühlig, H. Stafast, and W. Triebel, “Generation and annealing of defects in virgin fused silica (type III) upon ArF laser irradiation: Transmission measurements,” J. Non-Cryst. Solids 354(1), 25–31 (2008).
    [Crossref]
  7. L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).
  8. L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
    [Crossref]
  9. U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
    [Crossref]
  10. H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
    [Crossref] [PubMed]
  11. M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
    [Crossref]
  12. L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
    [Crossref]
  13. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
    [Crossref]
  14. M. A. S. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
    [Crossref]
  15. M. A. S. Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
    [Crossref]
  16. J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
    [Crossref]
  17. L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
    [Crossref] [PubMed]
  18. J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. D. Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 1–10 (2013).
    [Crossref]
  19. Y. Sakurai and K. Nagasawa, “Green photoluminescence band in γ-irradiated oxygen-surplus silics glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
    [Crossref]
  20. Y. Sakurai, “Photoluminescence band near 2.2eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1–3), 54–58 (2004).
    [Crossref]
  21. Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica,” Phys. Rev. B 66(3), 035404 (2002).
    [Crossref]
  22. H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
    [Crossref]
  23. A. N. Trukhin, “Luminescence of localized states in silicon dioxide glass. A short review,” J. Non-Cryst. Solids 357(8-9), 1931–1940 (2011).
    [Crossref]
  24. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys. 86(11), 6128–6134 (1999).
    [Crossref]
  25. G. Pacchioni and G. Ieranò, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
    [Crossref]
  26. Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles,” Appl. Phys. Lett. 75(6), 778–780 (1999).
    [Crossref]
  27. L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright Visible Luminescence in Silica Nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
    [Crossref]
  28. A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116(22), 9889–9896 (2002).
    [Crossref]
  29. M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
    [Crossref]
  30. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
    [Crossref]
  31. A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
    [Crossref]
  32. F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4(1), 5035 (2015).
    [Crossref] [PubMed]
  33. D. Wakabayashi, N. Funamori, and T. Sato, “Enhanced plasticity of silica glass at high pressure,” Phys. Rev. B 91(1), 014106 (2015).
    [Crossref]
  34. C. L. Kuo, S. Lee, and G. S. Hwang, “Strain-induced formation of surface defects in amorphous silica: a theoretical prediction,” Phys. Rev. Lett. 100(7), 076104 (2008).
    [Crossref] [PubMed]
  35. F. Neese, “The ORCA program system,” Comput. Mol. Sci. 2(1), 73–78 (2012).
    [Crossref]
  36. J. L. Gole and D. A. Dixon, “Transformation, green to orange-red, of a porous silicon photoluminescent surface in solution,” J. Phys. Chem. B 102(1), 33–39 (1998).
    [Crossref]
  37. V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
    [Crossref]
  38. L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing,” J. Phys. Condens. Matter 15(39), S2887–S2895 (2003).
    [Crossref]
  39. F. Zhou and J. D. Head, “Role of Si=O in the photoluminescence of porous silicon,” J. Phys. Chem. B 104(43), 9981–9986 (2000).
    [Crossref]
  40. X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
    [Crossref]
  41. M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, “The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures,” J. Chem. Phys. 131(3), 034705 (2009).
    [Crossref] [PubMed]

2016 (2)

2015 (4)

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4(1), 5035 (2015).
[Crossref] [PubMed]

D. Wakabayashi, N. Funamori, and T. Sato, “Enhanced plasticity of silica glass at high pressure,” Phys. Rev. B 91(1), 014106 (2015).
[Crossref]

X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
[Crossref]

2014 (1)

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

2013 (2)

2012 (2)

F. Neese, “The ORCA program system,” Comput. Mol. Sci. 2(1), 73–78 (2012).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

2011 (4)

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright Visible Luminescence in Silica Nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

A. N. Trukhin, “Luminescence of localized states in silicon dioxide glass. A short review,” J. Non-Cryst. Solids 357(8-9), 1931–1940 (2011).
[Crossref]

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

2010 (4)

2009 (1)

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, “The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures,” J. Chem. Phys. 131(3), 034705 (2009).
[Crossref] [PubMed]

2008 (2)

C. L. Kuo, S. Lee, and G. S. Hwang, “Strain-induced formation of surface defects in amorphous silica: a theoretical prediction,” Phys. Rev. Lett. 100(7), 076104 (2008).
[Crossref] [PubMed]

C. Mühlig, H. Stafast, and W. Triebel, “Generation and annealing of defects in virgin fused silica (type III) upon ArF laser irradiation: Transmission measurements,” J. Non-Cryst. Solids 354(1), 25–31 (2008).
[Crossref]

2007 (1)

L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
[Crossref]

2004 (3)

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

Y. Sakurai, “Photoluminescence band near 2.2eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1–3), 54–58 (2004).
[Crossref]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

2003 (2)

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing,” J. Phys. Condens. Matter 15(39), S2887–S2895 (2003).
[Crossref]

2002 (4)

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica,” Phys. Rev. B 66(3), 035404 (2002).
[Crossref]

M. A. S. Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116(22), 9889–9896 (2002).
[Crossref]

2001 (1)

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

2000 (1)

F. Zhou and J. D. Head, “Role of Si=O in the photoluminescence of porous silicon,” J. Phys. Chem. B 104(43), 9981–9986 (2000).
[Crossref]

1999 (3)

Y. Sakurai and K. Nagasawa, “Green photoluminescence band in γ-irradiated oxygen-surplus silics glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles,” Appl. Phys. Lett. 75(6), 778–780 (1999).
[Crossref]

J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys. 86(11), 6128–6134 (1999).
[Crossref]

1998 (4)

G. Pacchioni and G. Ieranò, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

J. L. Gole and D. A. Dixon, “Transformation, green to orange-red, of a porous silicon photoluminescent surface in solution,” J. Phys. Chem. B 102(1), 33–39 (1998).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
[Crossref]

M. A. S. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[Crossref]

Agnello, S.

L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
[Crossref]

Betti, R.

R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).
[Crossref]

Boizot, B.

L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
[Crossref]

Boscaino, R.

L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
[Crossref]

Bromley, S. T.

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, “The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures,” J. Chem. Phys. 131(3), 034705 (2009).
[Crossref] [PubMed]

Bude, J. D.

Cannas, M.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright Visible Luminescence in Silica Nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

Carr, C. W.

Chambonneau, M.

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

Chen, X.

X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
[Crossref]

Chen, Y. T.

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica,” Phys. Rev. B 66(3), 035404 (2002).
[Crossref]

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles,” Appl. Phys. Lett. 75(6), 778–780 (1999).
[Crossref]

Chikvaidze, G.

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

Chvojka, T.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Crégut, O.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Cross, D. A.

DeMange, P.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

Dian, J.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Diaz, R.

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

Dixon, D. A.

J. L. Gole and D. A. Dixon, “Transformation, green to orange-red, of a porous silicon photoluminescent surface in solution,” J. Phys. Chem. B 102(1), 33–39 (1998).
[Crossref]

Duchateau, G.

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

Dyuzheva, T. I.

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

Fargin, E.

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. D. Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 1–10 (2013).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Fasold, G.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Feit, M. D.

Fengrui, W.

Fournier, J.

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. D. Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 1–10 (2013).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Fujino, S.

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Funamori, N.

D. Wakabayashi, N. Funamori, and T. Sato, “Enhanced plasticity of silica glass at high pressure,” Phys. Rev. B 91(1), 014106 (2015).
[Crossref]

Galeckas, A.

J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys. 86(11), 6128–6134 (1999).
[Crossref]

Gelardi, F. M.

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

Gilliot, P.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Glinka, Y. D.

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica,” Phys. Rev. B 66(3), 035404 (2002).
[Crossref]

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116(22), 9889–9896 (2002).
[Crossref]

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles,” Appl. Phys. Lett. 75(6), 778–780 (1999).
[Crossref]

Gole, J. L.

J. L. Gole and D. A. Dixon, “Transformation, green to orange-red, of a porous silicon photoluminescent surface in solution,” J. Phys. Chem. B 102(1), 33–39 (1998).
[Crossref]

Grivickas, V.

J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys. 86(11), 6128–6134 (1999).
[Crossref]

Grua, P.

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. D. Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 1–10 (2013).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Guerzo, A. D.

Harned, N.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Head, J. D.

F. Zhou and J. D. Head, “Role of Si=O in the photoluminescence of porous silicon,” J. Phys. Chem. B 104(43), 9981–9986 (2000).
[Crossref]

Heitmann, J.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing,” J. Phys. Condens. Matter 15(39), S2887–S2895 (2003).
[Crossref]

Hirano, M.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Hönerlage, B.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Hongjie, L.

Hosono, H.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Huang, J.

Huang, L.

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4(1), 5035 (2015).
[Crossref] [PubMed]

Hurricane, O. A.

R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).
[Crossref]

Hwang, G. S.

C. L. Kuo, S. Lee, and G. S. Hwang, “Strain-induced formation of surface defects in amorphous silica: a theoretical prediction,” Phys. Rev. Lett. 100(7), 076104 (2008).
[Crossref] [PubMed]

Ieranò, G.

G. Pacchioni and G. Ieranò, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

Ikeda, H.

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Ikuta, Y.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Jiang, X.

Jin, H.

Jouannigot, S.

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. D. Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 1–10 (2013).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Jubera, V.

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. D. Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 1–10 (2013).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Kahlke, M.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Kajihara, K.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Kalceff, M. A. S.

M. A. S. Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

M. A. S. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[Crossref]

Kinoshita, T.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Kuo, C. L.

C. L. Kuo, S. Lee, and G. S. Hwang, “Strain-induced formation of surface defects in amorphous silica: a theoretical prediction,” Phys. Rev. Lett. 100(7), 076104 (2008).
[Crossref] [PubMed]

Laixi, S.

Lalic, N.

J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys. 86(11), 6128–6134 (1999).
[Crossref]

Lamaigne’re, L.

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

Laurence, T. A.

Lee, S.

C. L. Kuo, S. Lee, and G. S. Hwang, “Strain-induced formation of surface defects in amorphous silica: a theoretical prediction,” Phys. Rev. Lett. 100(7), 076104 (2008).
[Crossref] [PubMed]

Li, Q.

Lin, S. H.

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116(22), 9889–9896 (2002).
[Crossref]

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica,” Phys. Rev. B 66(3), 035404 (2002).
[Crossref]

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles,” Appl. Phys. Lett. 75(6), 778–780 (1999).
[Crossref]

Linnros, J.

J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys. 86(11), 6128–6134 (1999).
[Crossref]

Lityagina, L. M.

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

Liu, H.

Liu, X.

X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
[Crossref]

Martin, R.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Mebel, A. M.

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116(22), 9889–9896 (2002).
[Crossref]

Menapace, J.

Miller, P. E.

Morana, A.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright Visible Luminescence in Silica Nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

Mühlig, C.

C. Mühlig, H. Stafast, and W. Triebel, “Generation and annealing of defects in virgin fused silica (type III) upon ArF laser irradiation: Transmission measurements,” J. Non-Cryst. Solids 354(1), 25–31 (2008).
[Crossref]

Murata, T.

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Nagasawa, K.

Y. Sakurai and K. Nagasawa, “Green photoluminescence band in γ-irradiated oxygen-surplus silics glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

Natoli, J. Y.

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

Natura, U.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Neauport, J.

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Néauport, J.

Neese, F.

F. Neese, “The ORCA program system,” Comput. Mol. Sci. 2(1), 73–78 (2012).
[Crossref]

Negres, R. A.

Norton, M. A.

Nuccio, L.

L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
[Crossref]

Ohlmann, D.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Pacchioni, G.

G. Pacchioni and G. Ieranò, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

Parlato, A.

L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
[Crossref]

Pelant, I.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Radzig, V.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright Visible Luminescence in Silica Nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

Raffy, G.

Rehspringer, J. L.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Rullier, J. L.

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

Sakurai, Y.

Y. Sakurai, “Photoluminescence band near 2.2eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1–3), 54–58 (2004).
[Crossref]

Y. Sakurai and K. Nagasawa, “Green photoluminescence band in γ-irradiated oxygen-surplus silics glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

Sato, T.

D. Wakabayashi, N. Funamori, and T. Sato, “Enhanced plasticity of silica glass at high pressure,” Phys. Rev. B 91(1), 014106 (2015).
[Crossref]

Scholz, R.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing,” J. Phys. Condens. Matter 15(39), S2887–S2895 (2003).
[Crossref]

Sharakosky, A.

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

Shen, N.

Skuja, L.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
[Crossref]

Smits, K.

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

Sohr, O.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Sokol, A. A.

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, “The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures,” J. Chem. Phys. 131(3), 034705 (2009).
[Crossref] [PubMed]

Sousa, C.

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, “The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures,” J. Chem. Phys. 131(3), 034705 (2009).
[Crossref] [PubMed]

Stafast, H.

C. Mühlig, H. Stafast, and W. Triebel, “Generation and annealing of defects in virgin fused silica (type III) upon ArF laser irradiation: Transmission measurements,” J. Non-Cryst. Solids 354(1), 25–31 (2008).
[Crossref]

Steele, W. A.

Stesmans, A.

M. A. S. Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

Sun, L.

Suratwala, T. I.

Švrcek, V.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Talaga, D.

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. D. Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 1–10 (2013).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Triebel, W.

C. Mühlig, H. Stafast, and W. Triebel, “Generation and annealing of defects in virgin fused silica (type III) upon ArF laser irradiation: Transmission measurements,” J. Non-Cryst. Solids 354(1), 25–31 (2008).
[Crossref]

Trukhin, A. N.

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

A. N. Trukhin, “Luminescence of localized states in silicon dioxide glass. A short review,” J. Non-Cryst. Solids 357(8-9), 1931–1940 (2011).
[Crossref]

Vaccaro, L.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright Visible Luminescence in Silica Nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

Valenta, J.

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Wagner, C.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Wakabayashi, D.

D. Wakabayashi, N. Funamori, and T. Sato, “Enhanced plasticity of silica glass at high pressure,” Phys. Rev. B 91(1), 014106 (2015).
[Crossref]

Wang, X. B.

X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
[Crossref]

Wang, Y. W.

X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
[Crossref]

Wanguo, Z.

Wong, J.

M. A. S. Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

Wong, L. L.

Wu, W.

Xia, H.

Xiaodong, J.

Xiaoyan, Z.

Xin, Y.

Xinda, Z.

Yang, L.

Ye, X.

Yi, L. X.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing,” J. Phys. Condens. Matter 15(39), S2887–S2895 (2003).
[Crossref]

Yuan, F.

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4(1), 5035 (2015).
[Crossref] [PubMed]

Zacharias, M.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing,” J. Phys. Condens. Matter 15(39), S2887–S2895 (2003).
[Crossref]

Zhan, S.

Zhao, Y. Q.

X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
[Crossref]

Zheng, W.

Zhou, F.

F. Zhou and J. D. Head, “Role of Si=O in the photoluminescence of porous silicon,” J. Phys. Chem. B 104(43), 9981–9986 (2000).
[Crossref]

Zwijnenburg, M. A.

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, “The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures,” J. Chem. Phys. 131(3), 034705 (2009).
[Crossref] [PubMed]

Zyubin, A. S.

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116(22), 9889–9896 (2002).
[Crossref]

Appl. Phys. Lett. (4)

M. A. S. Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Green luminescence in silica glass: A possible indicator of subsurface fracture,” Appl. Phys. Lett. 100(11), 114103 (2012).
[Crossref]

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles,” Appl. Phys. Lett. 75(6), 778–780 (1999).
[Crossref]

M. Chambonneau, R. Diaz, P. Grua, J. L. Rullier, G. Duchateau, J. Y. Natoli, and L. Lamaigne’re, “Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” Appl. Phys. Lett. 104(2), 021121 (2014).
[Crossref]

Comput. Mol. Sci. (1)

F. Neese, “The ORCA program system,” Comput. Mol. Sci. 2(1), 73–78 (2012).
[Crossref]

J. Appl. Phys. (2)

J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys. 86(11), 6128–6134 (1999).
[Crossref]

Y. Sakurai and K. Nagasawa, “Green photoluminescence band in γ-irradiated oxygen-surplus silics glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

J. Chem. Phys. (2)

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116(22), 9889–9896 (2002).
[Crossref]

M. A. Zwijnenburg, A. A. Sokol, C. Sousa, and S. T. Bromley, “The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures,” J. Chem. Phys. 131(3), 034705 (2009).
[Crossref] [PubMed]

J. Lumin. (1)

A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin. 131(11), 2273–2278 (2011).
[Crossref]

J. Non-Cryst. Solids (6)

A. N. Trukhin, “Luminescence of localized states in silicon dioxide glass. A short review,” J. Non-Cryst. Solids 357(8-9), 1931–1940 (2011).
[Crossref]

Y. Sakurai, “Photoluminescence band near 2.2eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1–3), 54–58 (2004).
[Crossref]

L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, and A. Parlato, “Generation of oxygen deficient point defects in silica by γ and β irradiation,” J. Non-Cryst. Solids 353(5-7), 581–585 (2007).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
[Crossref]

C. Mühlig, H. Stafast, and W. Triebel, “Generation and annealing of defects in virgin fused silica (type III) upon ArF laser irradiation: Transmission measurements,” J. Non-Cryst. Solids 354(1), 25–31 (2008).
[Crossref]

X. Chen, Y. W. Wang, X. Liu, X. B. Wang, and Y. Q. Zhao, “Study of structural and electronic properties of the silanone group as bulk defect in amorphous SiO2,” J. Non-Cryst. Solids 414, 1–6 (2015).
[Crossref]

J. Phys. Chem. B (2)

J. L. Gole and D. A. Dixon, “Transformation, green to orange-red, of a porous silicon photoluminescent surface in solution,” J. Phys. Chem. B 102(1), 33–39 (1998).
[Crossref]

F. Zhou and J. D. Head, “Role of Si=O in the photoluminescence of porous silicon,” J. Phys. Chem. B 104(43), 9981–9986 (2000).
[Crossref]

J. Phys. Chem. C (1)

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright Visible Luminescence in Silica Nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing,” J. Phys. Condens. Matter 15(39), S2887–S2895 (2003).
[Crossref]

Mater. Chem. Phys. (1)

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Mater. Sci. Eng. C (1)

V. Švrček, I. Pelant, J. L. Rehspringer, P. Gilliot, D. Ohlmann, O. Crégut, B. Hönerlage, T. Chvojka, J. Valenta, and J. Dian, “Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon,” Mater. Sci. Eng. C 19(1-2), 233–236 (2002).
[Crossref]

Nat. Photonics (1)

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Nat. Phys. (1)

R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (7)

M. A. S. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica,” Phys. Rev. B 66(3), 035404 (2002).
[Crossref]

G. Pacchioni and G. Ieranò, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

D. Wakabayashi, N. Funamori, and T. Sato, “Enhanced plasticity of silica glass at high pressure,” Phys. Rev. B 91(1), 014106 (2015).
[Crossref]

Phys. Rev. Lett. (2)

C. L. Kuo, S. Lee, and G. S. Hwang, “Strain-induced formation of surface defects in amorphous silica: a theoretical prediction,” Phys. Rev. Lett. 100(7), 076104 (2008).
[Crossref] [PubMed]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2.,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Proc. SPIE (2)

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

Sci. Rep. (1)

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4(1), 5035 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) PL intensity spectra from a 8mm-thick Suprasil 401 sample excited by 6.4eV excimer laser at 400Hz repetition rate and 7.2mJ/cm2 fluence without and with 2μs delay time and 100μs gate time after pre-irradiation treatment; b) Normalized delay curves at different wavelengths from Suprasil 401 sample. Symbols are experimental data measured with 2μs delay gate. Dotted lines are single-exponential fits for peaks (1.9eV, 2.25eV and 3.25eV) and double-exponential fits for valleys (2.00eV and 2.75eV).

Fig. 2
Fig. 2

Lifetime spectra (a, b), corresponding normalized RMSE (root-mean-square error) (c, d), and intensity spectra (e, f) from Suprasil 401 (a, c, and e) and Corning 7980 (b, d and f) samples with 8mm thickness excited by 6.4eV excimer laser at 400Hz repetition rate and 7.2mJ/cm2 fluence. In lifetime spectra (a, b), resolved lifetimes of PL bands are shown in shadow areas. In intensity spectra (e, f), integrated PL signals (full lines) and resolved PL bands (dotted lines) measured with 5μs delay time and 100μs gate time before pre-irradiation (red lines) and after 1.5kJ/cm2-dose irradiation (black lines) are shown respectively. Arrows in PL intensity spectra show dominant intensity changes of PL bands due to pre-irradiation process.

Fig. 3
Fig. 3

Fluence dependence of normalized peak intensity of 2.39eV (cyan), 2.25eV (green) and 1.90eV (red) PL bands for Suprasil 401 (triangular dots) and Corning 7980 (round dots) at 400Hz repetition. The dotted lines are linear fits for green bands and quadratic fits for 1.9eV band.

Fig. 4
Fig. 4

Normalized surface (red lines) and bulk (black lines) PL signals (full lines), and corresponding PL bands (dotted lines) resolved by PL signals measured at different detection angles for 8mm-thick Suprasil 401 (a) and Corning 7980 (b) samples excited by 6.4eV excimer laser at 400Hz repetition rate and 5.6mJ/cm2 fluence.

Fig. 5
Fig. 5

Mechanical damage sites (a, b and c) and laser induced damage sites (g, h and i) from Quartz (a, g), Suprasil 401 (b, h), and Corning 7980 (c, i) with 2mm thickness observed by a differential interference microscope (red-bar scale: 200μm). PL signals before and after mechanical (d, e and f) and laser induced damages (j, k and l) at different positions of these damage sites from Quartz (d, j), Suprasil 401 (e, k), and Corning 7980 (f, l) excited by focused 6.4eV laser spot (repetition rate 400Hz; fluence 57.8mJ/cm2; spot diameter: 60μm) are measured at 5μs delay time and 100μs gate time.

Fig. 6
Fig. 6

a) Relation of peak intensities of 1.90eV and 2.25eV PL bands for 7 fused silica samples with different OH contents with 2mm thickness (1. Clear Quartz, 2. Corning 8655, 3. Suprasil 711, 4. Suprasil 501, 5. Suprasil 401, 6. Corning 7980, 7. Spectrosil 2000) excited by 6.4eV at 200Hz repetition rate and 3.2mJ/cm2 fluence. Dotted line shows a linear fit. b) Peak intensity of 1.90 PL band versus OH content.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S(λ, t d )= k=0 k=n I k (λ)×exp( t d / τ k )

Metrics