Abstract

We describe a new material system based on alloys of gallium and platinum that is well-suited for ultraviolet (UV) plasmonics. Although gallium has previously been shown to be useful for such studies, creating a continuous, pinhole-free thin film has been technically challenging. For example, when vacuum deposition techniques are used, gallium forms as isolated spherical nanoparticles on a wide variety of substrates. We demonstrate that when a platinum wetting layer is deposited first on a substrate followed by a thick gallium layer, a Ga-Pt alloy thin film is formed near the interface. The excess surface gallium can then be removed using a focused ion beam (FIB), exposing the alloy film. Ellipsometry measurements show that the alloy largely retains the dielectric properties of solid gallium throughout the UV, although the properties of the two diverge somewhat in the visible. We fabricate periodic subwavelength aperture arrays in the alloy thin film and observe enhanced optical transmission resonances that are sharper in the UV than in the visible. The patterned films appear to be stable over time periods exceeding six months based on optical measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films

Kanagasundar Appusamy, Mark Swartz, Steve Blair, Ajay Nahata, Jennifer S. Shumaker-Parry, and Sivaraman Guruswamy
Opt. Mater. Express 6(10) 3180-3192 (2016)

Platinum germanides for mid- and long-wave infrared plasmonics

Justin W. Cleary, William H. Streyer, Nima Nader, Shiva Vangala, Ivan Avrutsky, Bruce Claflin, Joshua Hendrickson, Daniel Wasserman, Robert E. Peale, Walter Buchwald, and Richard Soref
Opt. Express 23(3) 3316-3326 (2015)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  3. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  4. K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:.
    [Crossref] [PubMed]
  5. R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1(1), 35–42 (1967).
    [Crossref]
  6. C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984).
    [Crossref]
  7. G. D. Fasman, Practical Handbook of Biochemistry and Molecular Biology (CRC Press, 1989).
  8. C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
    [Crossref] [PubMed]
  9. S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
    [Crossref] [PubMed]
  10. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
    [Crossref]
  11. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  12. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
    [Crossref]
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988), Vol. 111.
  14. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
    [Crossref]
  15. K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014).
    [Crossref]
  16. F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
    [Crossref] [PubMed]
  17. K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
    [Crossref]
  18. H.-H. Jeong, A. G. Mark, and P. Fischer, “Magnesium plasmonics for UV applications and chiral sensing,” Chem. Commun. (Camb.) 52(82), 12179–12182 (2016).
    [Crossref] [PubMed]
  19. M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007).
    [Crossref]
  20. A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
    [Crossref]
  21. J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
    [Crossref] [PubMed]
  22. Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
    [Crossref] [PubMed]
  23. J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
    [Crossref]
  24. Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
    [Crossref]
  25. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990).
    [Crossref] [PubMed]
  26. W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62(1), 267–276 (1977).
    [Crossref]
  27. P. Guex and P. Feschotte, “Les systèmes binaires platine-aluminium, platinegallium et platine-indium,” J. Less Common Met. 46(1), 101–116 (1976).
    [Crossref]
  28. T. B. Massalski, H. Okamoto, and A. S. M. International, Binary Alloy Phase Diagrams (ASM International, 1990).
  29. M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006).
    [Crossref]
  30. M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).
  31. R. W. Cohn, “Freestanding metallic and polymeric nanostructures: Directed self-assembly,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition (CRC Press, 2014), pp. 1450–1474.
  32. M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
    [Crossref] [PubMed]
  33. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [Crossref] [PubMed]
  34. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]

2017 (1)

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:.
[Crossref] [PubMed]

2016 (1)

H.-H. Jeong, A. G. Mark, and P. Fischer, “Magnesium plasmonics for UV applications and chiral sensing,” Chem. Commun. (Camb.) 52(82), 12179–12182 (2016).
[Crossref] [PubMed]

2015 (3)

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
[Crossref]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

2014 (4)

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

2013 (3)

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

2012 (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

2010 (1)

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

2008 (2)

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

2007 (2)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007).
[Crossref]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006).
[Crossref]

2004 (1)

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1990 (1)

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990).
[Crossref] [PubMed]

1984 (1)

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984).
[Crossref]

1977 (1)

W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62(1), 267–276 (1977).
[Crossref]

1976 (1)

P. Guex and P. Feschotte, “Les systèmes binaires platine-aluminium, platinegallium et platine-indium,” J. Less Common Met. 46(1), 101–116 (1976).
[Crossref]

1967 (1)

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1(1), 35–42 (1967).
[Crossref]

1963 (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Agio, M.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Ahmed, Z.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Akozbek, N.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Alcaraz de la Osa, R.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

An, C.

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Andres, R. P.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990).
[Crossref] [PubMed]

Appusamy, K.

K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
[Crossref]

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014).
[Crossref]

Asher, S. A.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984).
[Crossref]

Blair, S.

K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
[Crossref]

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014).
[Crossref]

Brenny, B. J. M.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brown, A. S.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Callahan, J. M.

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Castro, T.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990).
[Crossref] [PubMed]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Chen, R. F.

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1(1), 35–42 (1967).
[Crossref]

Choi, E.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990).
[Crossref] [PubMed]

Coenen, T.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Cohn, R. W.

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

Di Quarto, F.

M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007).
[Crossref]

Dobrokhotov, V. V.

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Ekinci, Y.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Everitt, H. O.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Feschotte, P.

P. Guex and P. Feschotte, “Les systèmes binaires platine-aluminium, platinegallium et platine-indium,” J. Less Common Met. 46(1), 101–116 (1976).
[Crossref]

Fischer, P.

H.-H. Jeong, A. G. Mark, and P. Fischer, “Magnesium plasmonics for UV applications and chiral sensing,” Chem. Commun. (Camb.) 52(82), 12179–12182 (2016).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

González, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Gray, S. K.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Griessen, R.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Guex, P.

P. Guex and P. Feschotte, “Les systèmes binaires platine-aluminium, platinegallium et platine-indium,” J. Less Common Met. 46(1), 101–116 (1976).
[Crossref]

Guruswamy, S.

K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
[Crossref]

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014).
[Crossref]

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Jeong, H.-H.

H.-H. Jeong, A. G. Mark, and P. Fischer, “Magnesium plasmonics for UV applications and chiral sensing,” Chem. Commun. (Camb.) 52(82), 12179–12182 (2016).
[Crossref] [PubMed]

Jha, S. K.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Jiao, X.

K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
[Crossref]

Johnson, C. R.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984).
[Crossref]

Joshi, P. B.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:.
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kim, T.-H.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Krasavin, A. V.

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, C.

M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006).
[Crossref]

Li, M.

M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Liu, S.

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Löffler, J. F.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Losurdo, M.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Ludwig, M.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984).
[Crossref]

MacDonald, K. F.

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[Crossref]

Marcus, P.

M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007).
[Crossref]

Mark, A. G.

H.-H. Jeong, A. G. Mark, and P. Fischer, “Magnesium plasmonics for UV applications and chiral sensing,” Chem. Commun. (Camb.) 52(82), 12179–12182 (2016).
[Crossref] [PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

McMahon, J. M.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Miller, W. A.

W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62(1), 267–276 (1977).
[Crossref]

Moreno, F.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Nahata, A.

K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
[Crossref]

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014).
[Crossref]

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

O’Donnell, S.

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984).
[Crossref]

Ortiz, D.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pabba, S.

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

Peng, S.

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Polman, A.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Reifenberger, R.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990).
[Crossref] [PubMed]

Rojas, D.

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

Safir, A.

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

Saiz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Santamaria, M.

M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007).
[Crossref]

Sanz, J. M.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Schatz, G. C.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Segall, B.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Sterl, F.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Strohfeldt, N.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Sun, Y.

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Sundaresan, V.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:.
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tittl, A.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Tyson, W. R.

W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62(1), 267–276 (1977).
[Crossref]

Van Duyne, R. P.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Walter, R.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Wang, F.

M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006).
[Crossref]

Wang, J.

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Willets, K. A.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:.
[Crossref] [PubMed]

Wilson, A. J.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:.
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Yang, Y.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Yazdanpanah, M. M.

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

Zanna, S.

M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[Crossref]

Zhang, W.

M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006).
[Crossref]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Zheludev, N. I.

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[Crossref]

ACS Nano (2)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Adv. Mater. (1)

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Anal. Lett. (1)

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1(1), 35–42 (1967).
[Crossref]

Appl. Phys. Lett. (1)

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[Crossref]

Chem. Commun. (Camb.) (1)

H.-H. Jeong, A. G. Mark, and P. Fischer, “Magnesium plasmonics for UV applications and chiral sensing,” Chem. Commun. (Camb.) 52(82), 12179–12182 (2016).
[Crossref] [PubMed]

Chem. Rev. (1)

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017), doi:.
[Crossref] [PubMed]

Electrochim. Acta (1)

M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, “Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS),” Electrochim. Acta 53(3), 1314–1324 (2007).
[Crossref]

Intermetallics (1)

M. Li, C. Li, F. Wang, and W. Zhang, “Thermodynamic assessment of the Ga–Pt system,” Intermetallics 14(7), 826–831 (2006).
[Crossref]

J. Am. Chem. Soc. (2)

C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106(17), 5008–5010 (1984).
[Crossref]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

J. Less Common Met. (1)

P. Guex and P. Feschotte, “Les systèmes binaires platine-aluminium, platinegallium et platine-indium,” J. Less Common Met. 46(1), 101–116 (1976).
[Crossref]

J. Phys. Chem. C (2)

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Appusamy, X. Jiao, S. Blair, A. Nahata, and S. Guruswamy, “Mg thin films with Al seed layers for UV plasmonics,” J. Phys. D Appl. Phys. 48(18), 184009 (2015).
[Crossref]

Mater. Sci. Eng. B (1)

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng. B 181, 77–85 (2014).
[Crossref]

Nano Lett. (2)

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Nature (2)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Phys. Chem. Chem. Phys. (1)

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Phys. Rev. (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Phys. Rev. B Condens. Matter (1)

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B Condens. Matter 42(13), 8548–8556 (1990).
[Crossref] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Surf. Sci. (1)

W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62(1), 267–276 (1977).
[Crossref]

The 11th Annual NSTI Nanotech, Boston, MA, (1)

M. M. Yazdanpanah, V. V. Dobrokhotov, A. Safir, S. Pabba, D. Rojas, and R. W. Cohn, “Room temperature growth of single intermetallic nanostructures on nanoprobes,” The 11th Annual NSTI Nanotech, Boston, MA, 1, 896–899 (2008).

Other (4)

R. W. Cohn, “Freestanding metallic and polymeric nanostructures: Directed self-assembly,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition (CRC Press, 2014), pp. 1450–1474.

T. B. Massalski, H. Okamoto, and A. S. M. International, Binary Alloy Phase Diagrams (ASM International, 1990).

G. D. Fasman, Practical Handbook of Biochemistry and Molecular Biology (CRC Press, 1989).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988), Vol. 111.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the process used to create continuous thin films of Ga-Pt and subwavelength aperture arrays. A 3 nm Cr adhesion layer is first deposited onto a quartz slide, followed by a 10 nm layer of Pt (or Au) as a wetting layer. A Ga film is then manually spread on top of the wetting metal using the edge of a quartz slide, enabling the formation of a Ga-Pt thin film. The overall film thickness is approximately 1 µm. The excess Ga is then removed using FIB milling within a square well, exposing the ~100 nm thick alloy layer. To create plasmonic structures, the FIB is used once again to pattern the alloy thin film. (b) Scanning electron micrograph of a 10 μm x 10 μm exposed Ga-Pt film at the bottom of a well created by milling away the excess Ga. (c) and (b) Scanning electron micrograph of a subwavelength aperture array fabricated in the exposed Ga-Pt thin film. The apertures are circular with a diameter of 100 nm and periodicity of 300 nm.

Fig. 2
Fig. 2

EDS analysis for the relative concentration of Ga and Pt in the alloy film. The substrate is at the right end of the graph.

Fig. 3
Fig. 3

Dielectric properties of the Ga-Pt thin film measured using ellipsometry from both the top (alloy-air) surface and bottom (alloy-quartz) surface. Dielectric properties for solid and liquid Ga are also shown for comparison [32].

Fig. 4
Fig. 4

Optical transmission spectra measured for three separate 10μm x 10μm area Ga-Pt aperture array structures with different aperture diameters and periodicities. (a) UV transmission measured for an aperture array with aperture diameters of 100 nm and a periodicity of 300nm. (b) Visible transmission measured for the samples with periodicity of 600 nm and 650 nm and aperture diameters of 300nm in both cases. The transmission spectrum measured for the 650 nm periodicity sample after 6 months is also shown.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ= r p r s =tanψexp[iΔ]
n=n+ik=sin ϕ o [ 1+ ( 1ρ 1+ρ ) 2 tan 2 ϕ o ] 1/2 ,
λ dip = P n SPP i 2 + j 2 ,
n SPP = ε m ε d ε m + ε d .

Metrics