Abstract

The light absorbing performance of titanium dioxide (TiO2) nanohole arrays partially filled with metallic gold is investigated using analytical methods. As a plasmonic generation element on one-dimensional (1D) TiO2, the shape and distribution of Au nanoparticles can be microfabricated controllably in 1D TiO2 nanohole arrays rather than randomly loaded on their top surface. Results indicate that strong absorption enhancement and a large reception angle in the visible light region (λ = 700 - 850 nm) are induced due to the waveguide coupling within the nanohole arrays and surface plasmonic resonance (SPR) at the interface between TiO2 and gold fillings. By varying the thickness of TiO2 array or gold disks and the periodicity of nanohole array, a significant difference in plasmonic resonance wavelength and light absorption enhancement can be expected. Due to the symmetric configuration of the nanohole structure, the enhancement is insensitive to the polarization of the incoming light and the same enhancement factor can be achieved for both transverse electric (TE) and transverse magnetic (TM) modes. This model offers an approach to precisely control a 1D nanomaterial based plasmonic effect and can be adapted to other materials used in microelectromechanical systems industry.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films

Shih-Hui Chang, Stephen K. Gray, and George C. Schatz
Opt. Express 13(8) 3150-3165 (2005)

Fabrication of plasmonic Au/TiO2 nanofiber films with enhanced photocatalytic activities

Hua Li, Enzhou Liu, Jun Fan, Xiaoyun Hu, Jun Wan, Lin Sun, and Yang Hu
Appl. Opt. 55(2) 221-227 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
    [Crossref] [PubMed]
  2. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353(6346), 737–740 (1991).
    [Crossref]
  3. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  4. Y. Zhao, N. Hoivik, and K. Wang, “Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting,” Nano Energy 30, 728–744 (2016).
    [Crossref]
  5. M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
    [Crossref]
  6. G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
    [Crossref] [PubMed]
  7. P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
    [Crossref] [PubMed]
  8. N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, “Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting,” ACS Nano 5(6), 5056–5066 (2011).
    [Crossref] [PubMed]
  9. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
    [Crossref] [PubMed]
  10. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [Crossref] [PubMed]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  12. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  13. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [Crossref]
  14. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
    [Crossref]
  15. C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
    [Crossref] [PubMed]
  16. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
    [Crossref] [PubMed]
  17. M. Madou, Fundamentals of Microfabrication and Nanotechnology, Third Edition (CRC 2011).
  18. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  19. B. Wang, T. Gao, and P. W. Leu, “Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays,” Nano Energy 19, 471–475 (2016).
    [Crossref]
  20. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  21. R. Wagner and W. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
    [Crossref]
  22. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  23. K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
    [Crossref] [PubMed]
  24. G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
    [Crossref]
  25. J.W. Marvin and J. Weber, Handbook of Optical Materials (CRC 2003).
  26. E.D. Palik, Handbook of Optical Constants of Solids (Academic 1998).
  27. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
    [Crossref] [PubMed]
  28. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [Crossref] [PubMed]

2016 (3)

Y. Zhao, N. Hoivik, and K. Wang, “Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting,” Nano Energy 30, 728–744 (2016).
[Crossref]

B. Wang, T. Gao, and P. W. Leu, “Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays,” Nano Energy 19, 471–475 (2016).
[Crossref]

G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
[Crossref]

2014 (2)

M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
[Crossref]

K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

2011 (5)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, “Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting,” ACS Nano 5(6), 5056–5066 (2011).
[Crossref] [PubMed]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

2010 (4)

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

2009 (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

2008 (2)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[Crossref]

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

2006 (1)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

2001 (1)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

1991 (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353(6346), 737–740 (1991).
[Crossref]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

1964 (1)

R. Wagner and W. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Allam, N. K.

N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, “Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting,” ACS Nano 5(6), 5056–5066 (2011).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Aykol, M.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Ceresoli, D.

G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
[Crossref]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Chiarello, G. L.

G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
[Crossref]

Choi, K. S.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Christopher, P.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Cronin, S. B.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Das, C.

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

Ellis, W.

R. Wagner and W. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

El-Sayed, M. A.

N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, “Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting,” ACS Nano 5(6), 5056–5066 (2011).
[Crossref] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[Crossref]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Gao, T.

B. Wang, T. Gao, and P. W. Leu, “Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays,” Nano Energy 19, 471–475 (2016).
[Crossref]

García, H.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Grätzel, M.

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353(6346), 737–740 (1991).
[Crossref]

Grimes, C. A.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Hahn, R.

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Hedhili, M. N.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Hoivik, N.

Y. Zhao, N. Hoivik, and K. Wang, “Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting,” Nano Energy 30, 728–744 (2016).
[Crossref]

K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
[Crossref] [PubMed]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Hou, W.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Ingram, D. B.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Ioccozia, J.

M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
[Crossref]

Jakobsen, H.

K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
[Crossref] [PubMed]

Johannessen, E.

K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
[Crossref] [PubMed]

Juárez, R.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Latempa, T. J.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Lederer, F.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[Crossref]

Lee, K.

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

Leu, P. W.

B. Wang, T. Gao, and P. W. Leu, “Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays,” Nano Energy 19, 471–475 (2016).
[Crossref]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Lin, C.

M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
[Crossref]

Lin, Z.

M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
[Crossref]

Linic, S.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Liu, G.

K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
[Crossref] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Liu, Z.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Marino, T.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Martinazzo, R.

G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
[Crossref]

Molinari, R.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Moll, M.

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

Mor, G. K.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353(6346), 737–740 (1991).
[Crossref]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Pavaskar, P.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Poncheri, A. J.

N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, “Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting,” ACS Nano 5(6), 5056–5066 (2011).
[Crossref] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[Crossref]

Roy, P.

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

Ruff, T.

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

Schmuki, P.

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

Selli, E.

G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
[Crossref]

Shankar, K.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Sharma, S.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Silva, C. G.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Sun, L.

M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
[Crossref]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Varghese, O. K.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Wagner, R.

R. Wagner and W. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Wang, B.

B. Wang, T. Gao, and P. W. Leu, “Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays,” Nano Energy 19, 471–475 (2016).
[Crossref]

Wang, K.

Y. Zhao, N. Hoivik, and K. Wang, “Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting,” Nano Energy 30, 728–744 (2016).
[Crossref]

K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
[Crossref] [PubMed]

Wang, M.

M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
[Crossref]

Wang, P.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Wilke, R. H. T.

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Zhang, H.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Zhang, L.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, N. Hoivik, and K. Wang, “Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting,” Nano Energy 30, 728–744 (2016).
[Crossref]

Zuliani, A.

G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
[Crossref]

ACS Catal. (1)

G. L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, and E. Selli, “Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production,” ACS Catal. 6(2), 1345–1353 (2016).
[Crossref]

ACS Nano (1)

N. K. Allam, A. J. Poncheri, and M. A. El-Sayed, “Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting,” ACS Nano 5(6), 5056–5066 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Appl. Phys. Lett. (1)

R. Wagner and W. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Chem. Soc. Rev. (2)

K. Wang, G. Liu, N. Hoivik, E. Johannessen, and H. Jakobsen, “Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications,” Chem. Soc. Rev. 43(5), 1476–1500 (2014).
[Crossref] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, “Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis,” Energy Environ. Sci. 7(7), 2182–2202 (2014).
[Crossref]

J. Am. Chem. Soc. (2)

P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, “Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting,” J. Am. Chem. Soc. 133(15), 5629–5631 (2011).
[Crossref] [PubMed]

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[Crossref]

Nano Energy (2)

Y. Zhao, N. Hoivik, and K. Wang, “Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting,” Nano Energy 30, 728–744 (2016).
[Crossref]

B. Wang, T. Gao, and P. W. Leu, “Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays,” Nano Energy 19, 471–475 (2016).
[Crossref]

Nano Lett. (6)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, “P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8(7), 1906–1911 (2008).
[Crossref] [PubMed]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Nat. Mater. (3)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nature (3)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353(6346), 737–740 (1991).
[Crossref]

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

M. Madou, Fundamentals of Microfabrication and Nanotechnology, Third Edition (CRC 2011).

J.W. Marvin and J. Weber, Handbook of Optical Materials (CRC 2003).

E.D. Palik, Handbook of Optical Constants of Solids (Academic 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic view of the structure-implementation process. Different materials are indicated by colors.

Fig. 2
Fig. 2

Scheme of the proposed plasmon-enhanced nanohole structure and dimension notations.

Fig. 3
Fig. 3

E distribution at P = 320nm h = 150nm t = 50nm and λ = 750nm without (a) and with (b) gold filling. (c) mapping of absorption enhancement factor with respect to periodicity and incident wavelength and (d) re-plot of dash lines shown in (c).

Fig. 4
Fig. 4

E field distribution for different H and P at λ = 650 nm. (a) P = 300 nm, E couples both into the air and TiO2 domains, and the strength of the field changes slightly; (b) P = 340 nm, E couples mainly into TiO2 domain for longer hole structure (H = 150 nm), but gets weaker and redistributes into the air domain as h decreases to 100 nm.

Fig. 5
Fig. 5

Mapping of absorption enhancement factor with respect to periodicity and incident wavelength at (a) t = 25 nm (c) t = 10 nm. (b) and (d) plot the corresponding information following the white dashed lines in (a) and (c) respectively.

Fig. 6
Fig. 6

Electric field distribution at λ = 700 nm (Fig. 6(a), 6(b)) and λ = 800 nm (Fig. 6(c), 6(d)) with (Fig. 6(b), 6(d)) and without (Fig. 6(a), 6(c)) gold disks. Comparing to the local fields from (a), the black circles in (b) indicate area where coupling mode is attributed to the absorption enhancement after adding gold to the holes, while the white circles stand for SPR effect. However, no obvious E enhancement can be found in (d) where coupling mode occurs in (c).

Fig. 7
Fig. 7

Mapping of absorption enhancement factor with respect to incident angle and incident wavelength at t = 25 nm, P = 320 nm and h = 150 nm. (b) is a re-plot of (a) with maximum color range being unit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2π P = 2π λ ( ε 1 ε 2 ε 1 + ε 2 ) 1 2
ωIm( ε ) V | E | 2 dV

Metrics