Abstract

We demonstrate the in situ localized synthesis of vanadium oxides on glass and plastic substrates using localized laser illumination. The proposed technique is efficient and simple in terms of thermal budget and fabrication complexity. The physical properties of the laser-induced vanadium oxide channel region, which is mainly composed of VO2 and V2O5, are assessed by Raman analysis, while its electrical properties and phase transition characteristics with respect to the input optical powers and voltage biases are carefully examined by various resistance measurements. At a bias voltage of the order of 1 V, for example, optically triggered irreversible resistance switching through insulator-to-metal transition of vanadium oxide materials can be observed. The resistance switching ratio before and after the temperature-dependent phase transition exceeds two orders of magnitude. The obtained results confirm the applicability of the photothermally fabricated vanadium oxide devices to illumination-based resistance switching and temperature-dependent current flow management with large dynamic ranges. The proposed fabrication technique can also be applied to other transition metal oxide materials, which are currently grown at high temperatures or vacuum environments, for flexible electronics applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films

Taixing Huang, Lin Yang, Jun Qin, Fei Huang, Xupeng Zhu, Peiheng Zhou, Bo Peng, Huigao Duan, Longjiang Deng, and Lei Bi
Opt. Mater. Express 6(11) 3609-3621 (2016)

Size effects on metal-insulator phase transition in individual vanadium dioxide nanowires

Liu Hongwei, Lu Junpeng, Zheng Minrui, Tang Sing Hai, Sow Chorng Haur, Zhang Xinhai, and Ke Lin
Opt. Express 22(25) 30748-30755 (2014)

20 mA bidirectional laser triggering in planar devices based on vanadium dioxide thin films using CO2 laser

Jihoon Kim, Songhyun Jo, Kyongsoo Park, Ha-Joo Song, Hyun-Tak Kim, Bong-Jun Kim, and Yong Wook Lee
Opt. Express 23(11) 14234-14244 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Yang, C. Ko, and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
    [Crossref]
  2. Y. Liu, J. Liu, Y. Li, D. Wang, L. Ren, and K. Zou, “Effect of annealing temperature on the structure and properties of vanadium oxide films,” Opt. Mater. Express 6(5), 1552–1560 (2016).
    [Crossref]
  3. F. C. Case, “Improved VO2 thin films for infrared switching,” Appl. Opt. 30(28), 4119–4123 (1991).
    [Crossref] [PubMed]
  4. B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20(21), 23598–23609 (2012).
    [Crossref] [PubMed]
  5. Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
    [Crossref]
  6. L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
    [Crossref]
  7. F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
    [Crossref] [PubMed]
  8. D. Ruzmetov and S. Ramanathan, “Metal-Insulator Transition in Thin Film Vanadium Dioxide. In Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy,” (Springer, 2011).
  9. G. S. Nadkarni and V. S. Shirodkar, “Experiment and theory for switching in Al/V2O5/Al devices,” Thin Solid Films 105(2), 115–129 (1983).
    [Crossref]
  10. Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
    [Crossref] [PubMed]
  11. H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
    [Crossref] [PubMed]
  12. S. Chen, J. Lai, J. Dai, H. Ma, H. Wang, and X. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express 17(26), 24153–24161 (2009).
    [Crossref] [PubMed]
  13. C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD,” Chem. Vap. Depos. 13(4), 145–151 (2007).
    [Crossref]
  14. X. Wang and H. Gao, “Distinguishing the Photothermal and Photoinjection Effects in Vanadium Dioxide Nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
    [Crossref] [PubMed]
  15. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
    [Crossref] [PubMed]
  16. N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Mechanical properties of V2O5 polycrystals grown by laser light irradiation,” J. Alloys Compd. 186(1), L1–L5 (1992).
    [Crossref]
  17. N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Surface pecularities of vanadium oxides grown in the field of laser light,” Appl. Surf. Sci. 59(3), 201–206 (1992).
    [Crossref]
  18. A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
    [Crossref]
  19. J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
    [Crossref] [PubMed]
  20. Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
    [Crossref] [PubMed]
  21. S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
    [Crossref] [PubMed]
  22. S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
    [Crossref]
  23. G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
    [Crossref]
  24. K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
    [Crossref]
  25. Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
    [Crossref]
  26. Y.-G. Jeong, H. Bernien, J.-S. Kyoung, H.-R. Park, H.-S. Kim, J.-W. Choi, B.-J. Kim, H.-T. Kim, K. J. Ahn, and D.-S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
    [Crossref] [PubMed]
  27. R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
    [Crossref]
  28. J. Cao, W. Fan, H. Zheng, and J. Wu, “Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams,” Nano Lett. 9(12), 4001–4006 (2009).
    [Crossref] [PubMed]
  29. A. Sharoni, J. G. Ramírez, and I. K. Schuller, “Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions,” Phys. Rev. Lett. 101(2), 026404 (2008).
    [Crossref] [PubMed]
  30. Y. W. Lee, B.-J. Kim, S. Choi, H.-T. Kim, and G. Kim, “Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film,” Opt. Express 15(19), 12108–12113 (2007).
    [Crossref] [PubMed]

2016 (2)

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Y. Liu, J. Liu, Y. Li, D. Wang, L. Ren, and K. Zou, “Effect of annealing temperature on the structure and properties of vanadium oxide films,” Opt. Mater. Express 6(5), 1552–1560 (2016).
[Crossref]

2015 (3)

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

X. Wang and H. Gao, “Distinguishing the Photothermal and Photoinjection Effects in Vanadium Dioxide Nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

2014 (2)

J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

2012 (3)

2011 (4)

Y.-G. Jeong, H. Bernien, J.-S. Kyoung, H.-R. Park, H.-S. Kim, J.-W. Choi, B.-J. Kim, H.-T. Kim, K. J. Ahn, and D.-S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[Crossref] [PubMed]

Z. Yang, C. Ko, and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

2010 (2)

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

A. Sharoni, J. G. Ramírez, and I. K. Schuller, “Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions,” Phys. Rev. Lett. 101(2), 026404 (2008).
[Crossref] [PubMed]

2007 (3)

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD,” Chem. Vap. Depos. 13(4), 145–151 (2007).
[Crossref]

Y. W. Lee, B.-J. Kim, S. Choi, H.-T. Kim, and G. Kim, “Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film,” Opt. Express 15(19), 12108–12113 (2007).
[Crossref] [PubMed]

2003 (1)

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

2002 (1)

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

1992 (2)

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Mechanical properties of V2O5 polycrystals grown by laser light irradiation,” J. Alloys Compd. 186(1), L1–L5 (1992).
[Crossref]

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Surface pecularities of vanadium oxides grown in the field of laser light,” Appl. Surf. Sci. 59(3), 201–206 (1992).
[Crossref]

1991 (1)

1983 (1)

G. S. Nadkarni and V. S. Shirodkar, “Experiment and theory for switching in Al/V2O5/Al devices,” Thin Solid Films 105(2), 115–129 (1983).
[Crossref]

Ahn, K. J.

Alem, N.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

André, R.

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Averitt, R. D.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Bao, Q.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Bernien, H.

Bernussi, A.

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Bernussi, A. A.

Binions, R.

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD,” Chem. Vap. Depos. 13(4), 145–151 (2007).
[Crossref]

Boeckl, J.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Brassard, D.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Bui, C. T.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Cao, J.

J. Cao, W. Fan, H. Zheng, and J. Wu, “Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams,” Nano Lett. 9(12), 4001–4006 (2009).
[Crossref] [PubMed]

Case, F. C.

Cavalleri, A.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Chen, C.

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Chen, S.

Chen, W.

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

Cheong, H. M.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Choi, J.-W.

Choi, S.

Dai, J.

Deb, S. K.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

El Khakani, M. A.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Engel-Herbert, R.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Fan, W.

J. Cao, W. Fan, H. Zheng, and J. Wu, “Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams,” Nano Lett. 9(12), 4001–4006 (2009).
[Crossref] [PubMed]

Fan, Z.

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
[Crossref]

Fourmaux, S.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Gao, H.

X. Wang and H. Gao, “Distinguishing the Photothermal and Photoinjection Effects in Vanadium Dioxide Nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

Grigoropoulos, C. P.

J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
[Crossref] [PubMed]

Haislmaier, R. C.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Hakoe, F.

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Hartog, A. F.

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Hashimoto, K.

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Hevesi, I.

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Mechanical properties of V2O5 polycrystals grown by laser light irradiation,” J. Alloys Compd. 186(1), L1–L5 (1992).
[Crossref]

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Surface pecularities of vanadium oxides grown in the field of laser light,” Appl. Surf. Sci. 59(3), 201–206 (1992).
[Crossref]

Hilton, D. J.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Holtz, M.

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
[Crossref]

Huang, W.

In, J. B.

J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
[Crossref] [PubMed]

Islam, A. E.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Jeong, Y.-G.

Jiang, J.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Jochum, K. P.

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Joushaghani, A.

Kieffer, J. C.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Kim, B.-J.

Kim, D.-S.

Kim, G.

Kim, H.-S.

Kim, H.-T.

Kim, S. S.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Kinawy, N. I.

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Surface pecularities of vanadium oxides grown in the field of laser light,” Appl. Surf. Sci. 59(3), 201–206 (1992).
[Crossref]

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Mechanical properties of V2O5 polycrystals grown by laser light irradiation,” J. Alloys Compd. 186(1), L1–L5 (1992).
[Crossref]

Ko, C.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Ko, S. H.

J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
[Crossref] [PubMed]

Kruger, B. A.

Kwon, H.-J.

J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
[Crossref] [PubMed]

Kyoung, J.-S.

Lai, J.

Lee, D.

J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
[Crossref] [PubMed]

Lee, S.-H.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Lee, Y. W.

Li, B.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Li, F.

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

Li, L.

Li, Y.

Liu, J.

Liu, P.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Liu, Y.

Loh, K. P.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Ma, H.

Maruyama, B.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Mascarenhas, A.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Matsuda, T.

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Meng, F.

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

Mukherjee, D.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Nadkarni, G. S.

G. S. Nadkarni and V. S. Shirodkar, “Experiment and theory for switching in Al/V2O5/Al devices,” Thin Solid Films 105(2), 115–129 (1983).
[Crossref]

Naik, R.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Namai, A.

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Nánai, L.

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Mechanical properties of V2O5 polycrystals grown by laser light irradiation,” J. Alloys Compd. 186(1), L1–L5 (1992).
[Crossref]

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Surface pecularities of vanadium oxides grown in the field of laser light,” Appl. Surf. Sci. 59(3), 201–206 (1992).
[Crossref]

Natalio, F.

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Ngo, Y.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Nikolaev, P.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Ohkoshi, S.

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Pachter, R.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Pan, X.

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Park, H.-R.

Parkin, I. P.

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD,” Chem. Vap. Depos. 13(4), 145–151 (2007).
[Crossref]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Piccirillo, C.

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD,” Chem. Vap. Depos. 13(4), 145–151 (2007).
[Crossref]

Pitts, J. R.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Poon, J. K. S.

Prasankumar, R. P.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Qiao, S.

Ramanathan, S.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Ramírez, J. G.

A. Sharoni, J. G. Ramírez, and I. K. Schuller, “Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions,” Phys. Rev. Lett. 101(2), 026404 (2008).
[Crossref] [PubMed]

Rao, R.

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Ren, L.

Ruan, S.

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

Sawa, A.

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

Schuller, I. K.

A. Sharoni, J. G. Ramírez, and I. K. Schuller, “Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions,” Phys. Rev. Lett. 101(2), 026404 (2008).
[Crossref] [PubMed]

Seong, M. J.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Sharoni, A.

A. Sharoni, J. G. Ramírez, and I. K. Schuller, “Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions,” Phys. Rev. Lett. 101(2), 026404 (2008).
[Crossref] [PubMed]

Shen, L.

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

Shi, Q. W.

Shibuya, K.

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

Shirodkar, V. S.

G. S. Nadkarni and V. S. Shirodkar, “Experiment and theory for switching in Al/V2O5/Al devices,” Thin Solid Films 105(2), 115–129 (1983).
[Crossref]

Sow, C. H.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Sow, C.-H.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Squier, J.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Stoll, B.

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Sun, L.

Tan, C. K.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Tang, L. A. L.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Taylor, A. J.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Thong, J. T. L.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Tokoro, H.

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Tracy, C. E.

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Tremel, W.

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Tsunobuchi, Y.

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Vajtai, R.

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Surface pecularities of vanadium oxides grown in the field of laser light,” Appl. Surf. Sci. 59(3), 201–206 (1992).
[Crossref]

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Mechanical properties of V2O5 polycrystals grown by laser light irradiation,” J. Alloys Compd. 186(1), L1–L5 (1992).
[Crossref]

Varghese, B.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Wang, D.

Wang, H.

Wang, X.

X. Wang and H. Gao, “Distinguishing the Photothermal and Photoinjection Effects in Vanadium Dioxide Nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

Wever, R.

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Wu, J.

J. Cao, W. Fan, H. Zheng, and J. Wu, “Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams,” Nano Lett. 9(12), 4001–4006 (2009).
[Crossref] [PubMed]

Xie, R.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Xu, Y.

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Yang, Z.

Yi, X.

Zhang, H.-T.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Zhang, L.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Zhang, Q.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Zhang, Y.

Zhao, Y.

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
[Crossref]

Zheng, H.

J. Cao, W. Fan, H. Zheng, and J. Wu, “Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams,” Nano Lett. 9(12), 4001–4006 (2009).
[Crossref] [PubMed]

Zheng, Y.-X.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
[Crossref]

Zou, K.

Adv. Funct. Mater. (1)

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Adv. Mater. (1)

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref] [PubMed]

AIP Adv. (1)

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

Annu. Rev. Mater. Res. (1)

Z. Yang, C. Ko, and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Appl. Surf. Sci. (1)

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Surface pecularities of vanadium oxides grown in the field of laser light,” Appl. Surf. Sci. 59(3), 201–206 (1992).
[Crossref]

Chem. Vap. Depos. (1)

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD,” Chem. Vap. Depos. 13(4), 145–151 (2007).
[Crossref]

J. Alloys Compd. (1)

N. I. Kinawy, L. Nánai, R. Vajtai, and I. Hevesi, “Mechanical properties of V2O5 polycrystals grown by laser light irradiation,” J. Alloys Compd. 186(1), L1–L5 (1992).
[Crossref]

J. Appl. Phys. (1)

Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

J. Cao, W. Fan, H. Zheng, and J. Wu, “Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams,” Nano Lett. 9(12), 4001–4006 (2009).
[Crossref] [PubMed]

X. Wang and H. Gao, “Distinguishing the Photothermal and Photoinjection Effects in Vanadium Dioxide Nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

Nat. Chem. (1)

S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, and H. Tokoro, “Synthesis of a metal oxide with a room-temperature photoreversible phase transition,” Nat. Chem. 2(7), 539–545 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel, “Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation,” Nat. Nanotechnol. 7(8), 530–535 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Mater. Express (1)

Org. Electron. (1)

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan, and W. Chen, “Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes,” Org. Electron. 12(7), 1223–1226 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

A. Sharoni, J. G. Ramírez, and I. K. Schuller, “Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions,” Phys. Rev. Lett. 101(2), 026404 (2008).
[Crossref] [PubMed]

RSC Advances (1)

A. E. Islam, S. S. Kim, R. Rao, Y. Ngo, J. Jiang, P. Nikolaev, R. Naik, R. Pachter, J. Boeckl, and B. Maruyama, “Photo-thermal oxidation of single-layer graphene,” RSC Advances 6(48), 42545–42553 (2016).
[Crossref]

Small (1)

J. B. In, H.-J. Kwon, D. Lee, S. H. Ko, and C. P. Grigoropoulos, “In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics,” Small 10(4), 741–749 (2014).
[Crossref] [PubMed]

Solid State Ion. (1)

S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion. 165(1), 111–116 (2003).
[Crossref]

Thin Solid Films (1)

G. S. Nadkarni and V. S. Shirodkar, “Experiment and theory for switching in Al/V2O5/Al devices,” Thin Solid Films 105(2), 115–129 (1983).
[Crossref]

Other (1)

D. Ruzmetov and S. Ramanathan, “Metal-Insulator Transition in Thin Film Vanadium Dioxide. In Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy,” (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup for localized photothermal vanadium oxidation. The inset is an optical microscope image of the vanadium metal device (L = 50 μm, W = 10 μm) fabricated on a glass substrate. (b) SEM image of the vanadium oxide region after laser-induced photothermal oxidation; the magnified image in the inset shows the randomly oriented vanadium oxide rods. The scale bars in (b) and in the inset represent 5 and 2 μm, respectively. (c) Raman spectrum of the vanadium oxide region, showing spectral peaks of both VO2 (filled circles) and V2O5 (empty diamonds). (d) Calculated two-dimensional temperature distribution when the vanadium is subjected to 40-mW optical illumination; the scale bar represents 5 μm. The estimated transient response for up to 1 ms during photothermal oxidation on the onset of 40-mW laser illumination is also shown.

Fig. 2
Fig. 2

Frequency peaks were mapped as a function of the space using ~1-μm-resolution position-resolved Raman spectrum measurements within three representative spectral bands, namely, (a) 120–160 cm−1 (I in Fig. 1(c)); (b) 580–620 cm−1 (II in Fig. 1(c)); and (c) 680–720 cm−1 (III in Fig. 1(c)), which contain major Raman peaks for the VO2 and V2O5. All spectral information was obtained from the active region (10 × 10 μm) on the oxidized sample.

Fig. 3
Fig. 3

Resistance variation of the vanadium oxides fabricated on a glass substrate with respect to the incident optical power for the bias voltage (VS) values of (a) 0.5 V, (b) 0.8 V, and (c) 1.1 V. (d) Optical power of the first (Pt1) and second (Pt2) forward transition with respect to the voltage bias. (e) Current–voltage contour map of the vanadium oxide material fabricated on the glass substrate with various incident optical powers. The colors represent the current through the vanadium oxide channel in the logarithmic scale. (f) The resistance variation (R(T)/R(30 °C)) of the vanadium oxides as a function of temperature.

Fig. 4
Fig. 4

(a) Calculated maximum temperature TMax of VO2 fabricated on a glass substrate, as a function of the illumination power. The squares and circles represent TMax for the insulating and metallic phases, respectively, of VO2. In the numerical simulations, the optical constants, namely, the refractive indexes and extinction coefficients, of the two phases were considered to be 3.05 and i0.5, and 1.53 and i1.45, respectively. (b) Calculated maximum temperature of V2O5 fabricated on a glass substrate, as a function of the illumination power. The optical constants of the insulating V2O5 were assumed to be 2.47 and i1.794. The overall temperature linearly increases with the optical power.

Fig. 5
Fig. 5

(a) Transient response (optical resistance switching) measured under alternate illumination conditions (7 and 0 mW for on and off periods, respectively) using external bias voltage VS values of (a) 0.8 V and (b) 1.1 V.

Fig. 6
Fig. 6

(a) Evolution of the device resistance with respect to the incident optical power. The inset shows the vanadium oxide device array fabricated on a flexible PET substrate. (b) SEM image of the vanadium oxide region after the completion of the laser-induced photothermal oxidation. The deformation and shrinkage of the substrate was due to the low melting point of the PET, and it caused a reduction in the active oxidized area when compared to the glass substrate case. The included magnified image shows the amorphous vanadium oxide grains. The scale bars in (b) and in the inset represent 5 and 1 μm, respectively. (c) An example of current variation with increasing illumination power for a fixed voltage bias of VS = 0.1 V. Three regions can be identified: before the transition, during the transition, and after the transition. The numbers with arrows indicate the illumination power in mW. (d) Transient responses (reversible resistance switching by external NIR illumination) measured under alternate illumination conditions. The inset shows the optical power dependence of the device current under a voltage bias of 0.1 V, indicating a strong correlation between the current and the illumination power.

Metrics