Abstract

We present an electrostatic-field-tunable ferroelectric template to produce photoreduced silver nanostructures for Raman scattering enhancement. The intensity and distribution of the surface electrostatic field in the ferroelectric template determine the morphology of the photoreduced silver nanostructures and thus the degree of the Raman signal enhancement. The surface electrostatic field is produced by periodically proton-exchanged (PPE) regions in LiNbO3 and is tuned by thermal annealing to obtain the favorable photoreduced silver nanostructure. The variation of surface electrostatic properties by thermal annealing is simulated using the finite element method and measured by electrostatic force microscopy. The mechanism of silver nanostructure formation affected by the electrostatic field distribution is discussed. The formed silver nanostructures are functionalized by R6G dye to enable Raman signal measurement. The proposed method is demonstrated to be effective in tuning the surface electrostatic field distribution and produces a 4.13 times higher silver nanostructure and a 2.51 times larger Raman intensity in comparison with the conventional PPE sample.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
    [Crossref] [PubMed]
  2. H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
    [Crossref]
  3. S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, “SERS-melting: a new method for discriminating mutations in DNA sequences,” J. Am. Chem. Soc. 130(46), 15589–15601 (2008).
    [Crossref] [PubMed]
  4. K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
    [Crossref]
  5. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
    [Crossref] [PubMed]
  6. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  7. Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
    [Crossref]
  8. Y. Sun, B. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
    [Crossref]
  9. X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
    [Crossref] [PubMed]
  10. F. Jia, W. Yan, D. Wang, L. Zhang, L. Shi, A. Lin, G. Liang, M. Li, Y. Zhang, J. Zhang, H. Dong, G. Chen, and H. Chen, “Photoinduced Ag-nanoparticle deposition on Fe-doped lithium niobate crystals,” Opt. Mater. Express 4(2), 359–365 (2014).
    [Crossref]
  11. N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
    [Crossref] [PubMed]
  12. N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).
  13. S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
    [Crossref]
  14. J. L. Giocondi and G. S. Rohrer, “Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate,” Chem. Mater. 13(2), 241–242 (2001).
    [Crossref]
  15. S. Dunn, P. M. Jones, and D. E. Gallardo, “Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films,” J. Am. Chem. Soc. 129(28), 8724–8728 (2007).
    [Crossref] [PubMed]
  16. X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
    [Crossref]
  17. E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightw. Technol. 11(2), 277–284 (1993).
    [Crossref]
  18. N. Stojilovic, “Why can’t we see hydrogen in X-ray photoelectron spectroscopy?” J. Chem. Educ. 89(10), 1331–1332 (2012).
    [Crossref]
  19. M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
    [Crossref]
  20. H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
    [Crossref] [PubMed]

2016 (1)

N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).

2014 (3)

F. Jia, W. Yan, D. Wang, L. Zhang, L. Shi, A. Lin, G. Liang, M. Li, Y. Zhang, J. Zhang, H. Dong, G. Chen, and H. Chen, “Photoinduced Ag-nanoparticle deposition on Fe-doped lithium niobate crystals,” Opt. Mater. Express 4(2), 359–365 (2014).
[Crossref]

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

2013 (1)

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

2012 (4)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

N. Stojilovic, “Why can’t we see hydrogen in X-ray photoelectron spectroscopy?” J. Chem. Educ. 89(10), 1331–1332 (2012).
[Crossref]

2011 (3)

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[Crossref]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

Y. Sun, B. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

2008 (1)

S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, “SERS-melting: a new method for discriminating mutations in DNA sequences,” J. Am. Chem. Soc. 130(46), 15589–15601 (2008).
[Crossref] [PubMed]

2007 (3)

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

S. Dunn, P. M. Jones, and D. E. Gallardo, “Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films,” J. Am. Chem. Soc. 129(28), 8724–8728 (2007).
[Crossref] [PubMed]

X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
[Crossref]

2005 (1)

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

2001 (1)

J. L. Giocondi and G. S. Rohrer, “Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate,” Chem. Mater. 13(2), 241–242 (2001).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1993 (1)

E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightw. Technol. 11(2), 277–284 (1993).
[Crossref]

Bartlett, P. N.

S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, “SERS-melting: a new method for discriminating mutations in DNA sequences,” J. Am. Chem. Soc. 130(46), 15589–15601 (2008).
[Crossref] [PubMed]

Beier, H. T.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Benford, M. E.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Brown, T.

S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, “SERS-melting: a new method for discriminating mutations in DNA sequences,” J. Am. Chem. Soc. 130(46), 15589–15601 (2008).
[Crossref] [PubMed]

Buividas, R.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Cao, G.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Carville, N. C.

N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

Castiella, M.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Chen, G.

Chen, H.

Chou, A.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Chou, I.-H.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Chung, P. S.

E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightw. Technol. 11(2), 277–284 (1993).
[Crossref]

Collins, L.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Correa, E.

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

Cote, G. L.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Cowan, C. B.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Damm, S.

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Denning, D.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Dong, H.

Dougan, J. A.

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

Dunn, S.

S. Dunn, P. M. Jones, and D. E. Gallardo, “Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films,” J. Am. Chem. Soc. 129(28), 8724–8728 (2007).
[Crossref] [PubMed]

Eller, B.

Y. Sun, B. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Faulds, K.

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

Fredericks, P. M.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Gallardo, D. E.

S. Dunn, P. M. Jones, and D. E. Gallardo, “Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films,” J. Am. Chem. Soc. 129(28), 8724–8728 (2007).
[Crossref] [PubMed]

Gallo, K.

N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[Crossref]

Giocondi, J. L.

J. L. Giocondi and G. S. Rohrer, “Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate,” Chem. Mater. 13(2), 241–242 (2001).
[Crossref]

Good, T. A.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Goodacre, R.

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

Gracie, K.

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

Graham, D.

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

Hatano, H.

X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
[Crossref]

Hayazawa, N.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Henry, J. E.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Inouye, Y.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Izake, E. L.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Jaatinen, E.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Jackson, J. B.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Jia, F.

Jones, P. M.

S. Dunn, P. M. Jones, and D. E. Gallardo, “Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films,” J. Am. Chem. Soc. 129(28), 8724–8728 (2007).
[Crossref] [PubMed]

Juodkazis, S.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Kawata, S.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Kitamura, K.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
[Crossref]

Laurell, F.

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[Crossref]

Li, J.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Li, M.

Liang, G.

Lin, A.

Liu, X.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Liu, X. Y.

X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
[Crossref]

Loi, K. K.

E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightw. Technol. 11(2), 277–284 (1993).
[Crossref]

Mabbott, S.

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

Mahajan, S.

S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, “SERS-melting: a new method for discriminating mutations in DNA sequences,” J. Am. Chem. Soc. 130(46), 15589–15601 (2008).
[Crossref] [PubMed]

Manzo, M.

N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[Crossref]

Nemanich, R. J.

Y. Sun, B. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

Neumayer, S. M.

N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Ohashi, N.

X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
[Crossref]

Osada, M.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Pallikal, J.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Pasiskevicius, V.

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[Crossref]

Pun, E. Y. B.

E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightw. Technol. 11(2), 277–284 (1993).
[Crossref]

Rice, J. H.

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Richardson, J.

S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, “SERS-melting: a new method for discriminating mutations in DNA sequences,” J. Am. Chem. Soc. 130(46), 15589–15601 (2008).
[Crossref] [PubMed]

Rodriguez, B. J.

N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Rohrer, G. S.

J. L. Giocondi and G. S. Rohrer, “Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate,” Chem. Mater. 13(2), 241–242 (2001).
[Crossref]

Schlücker, S.

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

Seniutinas, G.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Shi, L.

Stojilovic, N.

N. Stojilovic, “Why can’t we see hydrogen in X-ray photoelectron spectroscopy?” J. Chem. Educ. 89(10), 1331–1332 (2012).
[Crossref]

Sun, Y.

Y. Sun, B. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

Takahiro, N.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Terabe, K.

X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
[Crossref]

Wang, D.

Watanabe, H.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

Weber, S. A.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Xu, J.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Yan, W.

Yu, Q.

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Zhang, J.

Zhang, L.

Zhang, Y.

ACS Biomater.-.Sci. Eng. (1)

N. C. Carville, S. M. Neumayer, M. Manzo, K. Gallo, and B. J. Rodriguez, “Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate,” ACS Biomater.-.Sci. Eng. 2(8), 1351–1356 (2016).

ACS Nano (1)

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano 6(8), 7373–7380 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

X. Y. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nano-domain patterns via photovoltaic effect,” Appl. Phys. Lett. 91(4), 044101 (2007).
[Crossref]

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[Crossref]

Chem. Mater. (1)

J. L. Giocondi and G. S. Rohrer, “Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate,” Chem. Mater. 13(2), 241–242 (2001).
[Crossref]

Chem. Sci. (Camb.) (1)

K. Gracie, E. Correa, S. Mabbott, J. A. Dougan, D. Graham, R. Goodacre, and K. Faulds, “Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS,” Chem. Sci. (Camb.) 5(3), 1030–1040 (2014).
[Crossref]

IEEE Trans. Lightw. Technol. (1)

E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightw. Technol. 11(2), 277–284 (1993).
[Crossref]

J. Am. Chem. Soc. (2)

S. Dunn, P. M. Jones, and D. E. Gallardo, “Photochemical growth of silver nanoparticles on c- and c+ domains on lead zirconate titanate thin films,” J. Am. Chem. Soc. 129(28), 8724–8728 (2007).
[Crossref] [PubMed]

S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, “SERS-melting: a new method for discriminating mutations in DNA sequences,” J. Am. Chem. Soc. 130(46), 15589–15601 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (2)

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

Y. Sun, B. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

J. Chem. Educ. (1)

N. Stojilovic, “Why can’t we see hydrogen in X-ray photoelectron spectroscopy?” J. Chem. Educ. 89(10), 1331–1332 (2012).
[Crossref]

J. Phys. Chem. B (1)

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, and J. H. Rice, “Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods,” J. Phys. Chem. C 116(50), 26543–26550 (2012).
[Crossref]

Nanoscale (1)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Plasmonics (1)

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Cote, “Application of Surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2(2), 55–64 (2007).
[Crossref]

Sci. Technol. Adv. Mater. (1)

X. Liu, K. Kitamura, Q. Yu, J. Xu, M. Osada, N. Takahiro, J. Li, and G. Cao, “Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates,” Sci. Technol. Adv. Mater. 14(5), 055011 (2013).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

OM images (first row), AFM tomography images (second row) and line profiles (third row), and EFM images (fourth row) of the PPE LiNbO3 substrates with the annealing time of (a)0 hr; (b)1 hr; (c)4 hrs; (d)9 hrs; (e)16 hrs.

Fig. 2
Fig. 2

SEM images (first and second row), AFM tomography images (third row) and line profiles (fourth row) of photoreduced silver nanoparticles on the PPE LiNbO3 substrates treated with the annealing time of (a)0 hr; (b)1 hr; (c)4 hrs; (d)9 hrs; (e)16 hrs.

Fig. 3
Fig. 3

(a-e) Simulated spontaneous polarization distribution and vectorial electrostatic filed distribution of the PPE LiNbO3 substrates treated with the annealing time of 0 hr, 1 hr, 4 hrs, 9 hrs, and 16 hrs. The normalized distribution of (f) the in-plane component (Ex), (g) the out-of-plane component (Ez), and (h) the field value of the electrostatic field at the depth 10nm below the + z surface.

Fig. 4
Fig. 4

(a) Transmission spectra of the SERS substrates treated with the annealing time of 0 hr, 1 hr, 4 hrs, 9 hrs, and 16 hrs; (b) dependence of LSPR wavelength on the square root of the annealing time.

Fig. 5
Fig. 5

(a) R6G dye SERS spectra on the plain LiNbO3 substrates and the SERS substrates treated with the annealing time of 0 hr, 1 hr, 4 hrs, 9 hrs, and 16 hrs; (b) dependence of Raman intensity on the square root of the annealing time.

Metrics