Abstract

The bonds established with Onyx’s adhesive-free bonding (AFB) technique between optical materials, such as trivalent rare-earth ion doped YAG, un-doped YAG, or sapphire, rely on Van der Waals forces. The AFB technique is being applied to fabricate true crystalline fiber waveguides for high power, high beam quality laser emission, and walk-off compensated nonlinear crystal stacks for high efficiency, high beam quality optical nonlinear conversion.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterisation of adhesive-free bonded crystalline Yb:YAG for high energy laser applications

Mariastefania De Vido, David Meissner, Stephanie Meissner, Klaus Ertel, P. Jonathan Phillips, Paul D. Mason, Saumyabrata Banerjee, Thomas J. Butcher, Jodie M. Smith, Chris Edwards, Cristina Hernandez-Gomez, and John L. Collier
Opt. Mater. Express 7(2) 425-432 (2017)

Optical parametric oscillations of 2 μm in multiple-layer bonded walk-off compensated KTP stacks

Xiaodong Mu, Helmuth Meissner, and Huai-Chuan Lee
Opt. Lett. 35(3) 387-389 (2010)

Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

A. V. Smith, D. J. Armstrong, and W. J. Alford
J. Opt. Soc. Am. B 15(1) 122-141 (1998)

References

  • View by:
  • |
  • |
  • |

  1. M. De Vido, D. Meissner, S. Meissner, K. Ertel, P. J. Phillips, P. D. Mason, S. Banerjee, T. J. Butcher, J. M. Smith, C. Edwards, C. Hernandez-Gomez, and J. L. Collier, “Characterization of adhesive-free bonded crystalline Yb:YAG for high energy laser applications,” Opt. Mater. Express 7(2), 425 (2017).
    [Crossref]
  2. www.onyxoptics.com .
  3. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermal–optics properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  4. I. Kuznetsov, I. Mukhin, D. Silin, and O. Palashov, “Thermal conductivity measurements using phase-shifting interferometry,” Opt. Mater. Express 4(10), 2204 (2014).
    [Crossref]
  5. D. Li, P. Hong, M. Vedula, and H. E. Meissner, “Thermal conductivity investigation of adhesive-free bond laser components,” Proc. SPIE 10100, Optical Components and Materials, 1010011 (2017).
  6. X. Mu, H.-C. Lee, and H. E. Meissner, “Investigation of Interface Heat Transfer in Adhesive Free Bond Laser Composites,” Proc. DEPS SSDLTR (Broomfield, 2010).
  7. L. Goldberg, J. P. Koplow, and D. A. V. Kliner, “Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode,” Opt. Lett. 24(10), 673–675 (1999).
    [Crossref] [PubMed]
  8. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
    [Crossref] [PubMed]
  9. IPG product/application press releases 2009. http://www.ipgphotonics.com/Collateral/Documents/English-US/PR_Final_10kW_SM_laser.pdf .
  10. Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
    [Crossref]
  11. X. Mu, H. E. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE 8237, 82373M (2012).
    [Crossref]
  12. X. Mu, S. K. Meissner, H. E. Meissner, and A. W. Yu, “Double clad YAG crystalline fiber waveguides for diode pumped high power lasing,” in Solid State Lasers XXIII: Technology and Devices, W. A. Clarkson; R. K. Shori, Editors, Proc. SPIE 8959, 895906 (SPIE, Bellingham, WA 2014).
  13. K. Okamoto, Fundamentals of Optical Waveguides, 2nd Ed. (Academic Press, 2006).
  14. K. S. Chiang, “Finite-Element Analysis of Optical Fibers with Iterative Treatment of the Infinite 2-D Space,” Opt. Quantum Electron. 17(6), 381–391 (1985).
    [Crossref]
  15. K. S. Chiang, “Dual effective-index method for the analysis of rectangular dielectric waveguides,” Appl. Opt. 25(13), 2169 (1986).
    [Crossref] [PubMed]
  16. D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers,” Proc. SPIE 9744, Optical Components and Materials, 97441H (2016).
  17. H.-C. Lee, X. Mu, and H. E. Meissner, “Interferometric measurement of refractive index difference applied to composite waveguide lasers,” Proc. CLEO2011, AMB4, (2011).
    [Crossref]
  18. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  19. J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
    [Crossref]
  20. D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores,” Proc. SPIE 9744, Optical Components and Materials, 97441I (2016).
  21. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  22. X. Mu, S. Meissner, H. Meissner, and A. W. Yu, “High efficiency Yb:YAG crystalline fiber-waveguide lasers,” Opt. Lett. 39(21), 6331–6334 (2014).
    [Crossref] [PubMed]
  23. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406 (1983).
    [Crossref] [PubMed]
  24. https://www.rp-photonics.com/spatial_walk_off.html?s=ak .
  25. J. J. Zondy, D. Kolker, C. Bonnin, and D. Lupinski, “Second-harmonic generation with monolithic walk-off-compensating periodica structures. II. Experiments,” J. Opt. Soc. Am. B 20(8), 1695 (2003).
    [Crossref]
  26. K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
    [Crossref]
  27. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14(2), 460–474 (1997).
    [Crossref]
  28. X. Mu, H. Meissner, and H.-C. Lee, “Optical parametric oscillations of 2 microm in multiple-layer bonded walk-off compensated KTP stacks,” Opt. Lett. 35(3), 387–389 (2010).
    [Crossref] [PubMed]
  29. S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1-3), 173–178 (2004).
    [Crossref]

2017 (2)

2016 (2)

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers,” Proc. SPIE 9744, Optical Components and Materials, 97441H (2016).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores,” Proc. SPIE 9744, Optical Components and Materials, 97441I (2016).

2014 (2)

2012 (1)

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

2010 (3)

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

X. Mu, H. Meissner, and H.-C. Lee, “Optical parametric oscillations of 2 microm in multiple-layer bonded walk-off compensated KTP stacks,” Opt. Lett. 35(3), 387–389 (2010).
[Crossref] [PubMed]

2008 (1)

2006 (1)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermal–optics properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

2004 (1)

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1-3), 173–178 (2004).
[Crossref]

2003 (1)

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

1999 (1)

1997 (1)

1986 (1)

1985 (1)

K. S. Chiang, “Finite-Element Analysis of Optical Fibers with Iterative Treatment of the Infinite 2-D Space,” Opt. Quantum Electron. 17(6), 381–391 (1985).
[Crossref]

1983 (1)

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermal–optics properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Alford, W. J.

Armstrong, D. J.

Banerjee, S.

Barty, C. P.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

Barty, C. P. J.

Beach, R. J.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Bonnin, C.

Bowers, M. S.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Bullington, A. L.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

Butcher, T. J.

Chiang, K. S.

K. S. Chiang, “Dual effective-index method for the analysis of rectangular dielectric waveguides,” Appl. Opt. 25(13), 2169 (1986).
[Crossref] [PubMed]

K. S. Chiang, “Finite-Element Analysis of Optical Fibers with Iterative Treatment of the Infinite 2-D Space,” Opt. Quantum Electron. 17(6), 381–391 (1985).
[Crossref]

Clarkson, W. A.

Collier, J. L.

Cooper, L. J.

Dawson, J. W.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

De Vido, M.

Dubinskii, M.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

Edwards, C.

Ertel, K.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermal–optics properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Garetz, B. A.

Goldberg, L.

Haidar, S.

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1-3), 173–178 (2004).
[Crossref]

Hara, K.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Heebner, J. E.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Hernandez-Gomez, C.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Hong, P.

D. Li, P. Hong, M. Vedula, and H. E. Meissner, “Thermal conductivity investigation of adhesive-free bond laser components,” Proc. SPIE 10100, Optical Components and Materials, 1010011 (2017).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores,” Proc. SPIE 9744, Optical Components and Materials, 97441I (2016).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers,” Proc. SPIE 9744, Optical Components and Materials, 97441H (2016).

Ito, H.

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1-3), 173–178 (2004).
[Crossref]

Kalisky, O.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Kalisky, Y.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Khosrofian, J. M.

Kliner, D. A. V.

Kolker, D.

Koplow, J. P.

Kuznetsov, I.

Lee, H.-C.

X. Mu, H. Meissner, and H.-C. Lee, “Optical parametric oscillations of 2 microm in multiple-layer bonded walk-off compensated KTP stacks,” Opt. Lett. 35(3), 387–389 (2010).
[Crossref] [PubMed]

H.-C. Lee, X. Mu, and H. E. Meissner, “Interferometric measurement of refractive index difference applied to composite waveguide lasers,” Proc. CLEO2011, AMB4, (2011).
[Crossref]

Li, D.

D. Li, P. Hong, M. Vedula, and H. E. Meissner, “Thermal conductivity investigation of adhesive-free bond laser components,” Proc. SPIE 10100, Optical Components and Materials, 1010011 (2017).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores,” Proc. SPIE 9744, Optical Components and Materials, 97441I (2016).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers,” Proc. SPIE 9744, Optical Components and Materials, 97441H (2016).

Lupinski, D.

Mason, P. D.

Matsumoto, S.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Meissner, D.

Meissner, H.

Meissner, H. E.

D. Li, P. Hong, M. Vedula, and H. E. Meissner, “Thermal conductivity investigation of adhesive-free bond laser components,” Proc. SPIE 10100, Optical Components and Materials, 1010011 (2017).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores,” Proc. SPIE 9744, Optical Components and Materials, 97441I (2016).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers,” Proc. SPIE 9744, Optical Components and Materials, 97441H (2016).

H.-C. Lee, X. Mu, and H. E. Meissner, “Interferometric measurement of refractive index difference applied to composite waveguide lasers,” Proc. CLEO2011, AMB4, (2011).
[Crossref]

Meissner, S.

Meissner, S. K.

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers,” Proc. SPIE 9744, Optical Components and Materials, 97441H (2016).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores,” Proc. SPIE 9744, Optical Components and Materials, 97441I (2016).

Messerly, M. J.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Miyamoto, K.

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1-3), 173–178 (2004).
[Crossref]

Mu, X.

Mukhin, I.

Nagashima, W.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermal–optics properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Onda, T.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Palashov, O.

Pax, P. A.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

Pax, P. H.

Phillips, P. J.

Raymond, T. D.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermal–optics properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Sahu, J. K.

Shoji, I.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Silin, D.

Smith, A. V.

Smith, J. M.

Sridharan, A. K.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Stappaerts, E. A.

Vedula, M.

D. Li, P. Hong, M. Vedula, and H. E. Meissner, “Thermal conductivity investigation of adhesive-free bond laser components,” Proc. SPIE 10100, Optical Components and Materials, 1010011 (2017).

Wang, P.

Yu, A. W.

Zondy, J. J.

Appl. Opt. (2)

Appl. Phys. Express (1)

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermal–optics properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1-3), 173–178 (2004).
[Crossref]

Opt. Eng. (1)

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

K. S. Chiang, “Finite-Element Analysis of Optical Fibers with Iterative Treatment of the Infinite 2-D Space,” Opt. Quantum Electron. 17(6), 381–391 (1985).
[Crossref]

Proc. SPIE (4)

D. Li, P. Hong, M. Vedula, and H. E. Meissner, “Thermal conductivity investigation of adhesive-free bond laser components,” Proc. SPIE 10100, Optical Components and Materials, 1010011 (2017).

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers,” Proc. SPIE 9744, Optical Components and Materials, 97441H (2016).

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. A. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

D. Li, P. Hong, S. K. Meissner, and H. E. Meissner, “Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores,” Proc. SPIE 9744, Optical Components and Materials, 97441I (2016).

Other (8)

H.-C. Lee, X. Mu, and H. E. Meissner, “Interferometric measurement of refractive index difference applied to composite waveguide lasers,” Proc. CLEO2011, AMB4, (2011).
[Crossref]

https://www.rp-photonics.com/spatial_walk_off.html?s=ak .

X. Mu, H.-C. Lee, and H. E. Meissner, “Investigation of Interface Heat Transfer in Adhesive Free Bond Laser Composites,” Proc. DEPS SSDLTR (Broomfield, 2010).

IPG product/application press releases 2009. http://www.ipgphotonics.com/Collateral/Documents/English-US/PR_Final_10kW_SM_laser.pdf .

www.onyxoptics.com .

X. Mu, H. E. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE 8237, 82373M (2012).
[Crossref]

X. Mu, S. K. Meissner, H. E. Meissner, and A. W. Yu, “Double clad YAG crystalline fiber waveguides for diode pumped high power lasing,” in Solid State Lasers XXIII: Technology and Devices, W. A. Clarkson; R. K. Shori, Editors, Proc. SPIE 8959, 895906 (SPIE, Bellingham, WA 2014).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd Ed. (Academic Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Configuration of AFB composites for thermal conductivity/heat transfer measurement.

Fig. 2
Fig. 2

Experimental setup for thermal conductivity/heat transfer measurement.

Fig. 3
Fig. 3

Schematic illustration of the un-doped YAG and rare-earth doped YAG composite and the thermal expansion (dashed lines) caused by a uniform temperature gradient.

Fig. 4
Fig. 4

ΔT derived from measured ΔOPD for 3% Er:YAG/U-YAG (undoped YAG).

Fig. 5
Fig. 5

Schematic illustration of a double-clad AFB Crystalline Fiber Waveguide (CFW).

Fig. 6
Fig. 6

Contour plot of scalability of RE:YAG fiber lasers with core diameter of circular cross section in low power regime with core material of a) 2.5% ceramic Yb:YAG, b) 4% Tm:YAG, c) 0.5% Er:YAG, and d) 2% Ho:YAG.

Fig. 7
Fig. 7

Experimental layout of the cladding pumped CFW and laser output profile. f1 and f2, aspheric lenses; BS, Beam splitter.

Fig. 8
Fig. 8

Laser output power as a function of pump power. The upward and downward open triangles and the solid squares are the measured forward, backward and total laser power from the uncoated CFW ends, respectively. The solid circles are the laser power after input and output mirrors attached.

Fig. 9
Fig. 9

(Left) Measured (solid curve) and simulated (dashed curve) beam profiles of the doubled-clad CFW laser. The inserted image is the 2-D beam profile measured by a pyroelectric camera.

Fig. 10
Fig. 10

(Right) Beam radius as a function of position after a 200-mm focus lens.

Fig. 11
Fig. 11

Walk-off compensated KTP stack. Arrow denotes the orientation of optical axis.

Fig. 12
Fig. 12

Experimental setup of 2-μm OPO employing AFB WoC KTP stack.

Fig. 13
Fig. 13

Beam profile of 2-μm output from the OPO system.

Tables (2)

Tables Icon

Table 1 Examples of single crystal core/inner cladding materials and core width to achieve intrinsic single-mode output.

Tables Icon

Table 2 [20]. Parameters and physical constants of RE:YAG CFWs.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ Δ T ( x ) = Q x κ 1 S f o r x < l 1 Δ T ( x ) = Q l 1 κ 1 S + Q H S + Q ( x l 1 ) κ 2 S f o r x > l 1
d ( x ) = d 0 [ 1 + α Δ T ( x ) ] n ( x ) = n 0 + d n d T Δ T ( x )
O P D ( x ) = d ( x ) n ( x ) = [ d 0 [ 1 + α Δ T ( x ) ] ] [ n 0 + d n d T Δ T ( x ) ]
Δ O P D ( x ) = O P D 2 ( x ) O P D 1 ( x ) d 0 ( n 0 α + d n d t ) Δ T ( x ) = d 0 C 0 Δ T ( x )
η 1 = d Δ O P D 1 ( x ) d x = d 0 C 0 d Δ T 1 ( x ) d x = d 0 C 0 Q κ 1 S η 2 = d Δ O P D 2 ( x ) d x = d 0 C 0 d Δ T 2 ( x ) d x = d 0 C 0 Q κ 2 S
κ 1 κ 2 = η 2 η 1
T b = Q H S
H = Q T b S
B < 1.37 , B = 2 d λ n c o r e 2 n c l a d 2
P l e n s o u t η l a s e r η h e a t 2 π κ λ 2 d n d T d 2 L
P O u t S B S 17 π d 2 4 g B ( Δ ν ) L Γ 2 ln ( G )
P o u t P u m p η l a s e r I p u m p π 2 N A 2 α c o r e A L d 2 4

Metrics