Abstract

Near infrared (NIR) long-persistent luminescence phosphors are promising for applications ranging from night-vision surveillance to in vivo bioimaging. Yet, the luminescence brightness and afterglow period remain insufficient for the reported persistent phosphors with both the activator content optimized and the host material defined. Here, we show that the emission profile of the emerging NIR persistent phosphors of Cr3+-activated spinel zinc gallogermanate (emission at 650–850 nm from the 2E→4A2 transition of Cr3+) can be improved through the incorporation of non-luminescent, divalent calcium (Ca2+) into the host lattice. We found that a slight introduction of 3% Ca2+ ions into the formulated afterglow material was able to enhance its persistent luminescence intensity (recorded after 300s stoppage of the excitation light) by about 15 fold. This was possibly ascribed to the engineering of tetrahedral trapping defects (spinel inversion) surrounding the emitting Cr3+ ions at the octahedral sites and the reduction of luminescence quenching centers in the crystal, enacted by the calcium doping. The simple performance-enhancing route described here has an immediate implication for other visible and NIR persistent phosphors engaged in a plethora of photonic and biomedical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of co-doping Si ions on persistent luminescence of ZnGa2O4: Cr3+ red phosphors

Zhengfa Hu, Dinghua Ye, Xiujuan Lan, Wei Zhang, Li Luo, and Yinhai Wang
Opt. Mater. Express 6(4) 1329-1338 (2016)

Multiple magnification effects of Ce3+ ions on near-infrared persistent luminescence of Cr-doped LaAlO3

Yi Zhang, Rui Huang, Zhenxu Lin, Jie Song, Xiang Wang, Yanqing Guo, Chao Song, Ying Yu, and John Robertson
Opt. Mater. Express 6(3) 922-928 (2016)

Broadly tunable emission from Mn-doped zinc gallogermanate phosphors through composition modification

Xiaoqing Xu, Jing Ren, Nan Huang, Huidan Zeng, Guorong Chen, Deshuang Kong, Changjun Gu, Chunming Chen, Zhibin Liu, Linren Kong, and Haizheng Tao
Opt. Mater. Express 4(11) 2433-2440 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
    [Crossref]
  2. K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
    [Crossref]
  3. M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
    [Crossref]
  4. L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
    [Crossref]
  5. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [Crossref] [PubMed]
  6. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
    [Crossref] [PubMed]
  7. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref] [PubMed]
  8. H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2(4), 371–381 (2012).
    [Crossref]
  9. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
    [Crossref] [PubMed]
  10. X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
    [Crossref]
  11. S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
    [Crossref]
  12. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–4, 287–289 (1997).
    [Crossref]
  13. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  14. A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).
  15. D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem Solid St 13(4), J32–J34 (2010).
    [Crossref]
  16. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
    [Crossref] [PubMed]
  17. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  18. H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
    [Crossref]
  19. I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
    [Crossref]
  20. D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
    [Crossref]
  21. J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
    [Crossref]
  22. N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
    [Crossref]
  23. N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
    [Crossref] [PubMed]
  24. N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
    [Crossref] [PubMed]
  25. N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
    [Crossref] [PubMed]

2017 (1)

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

2015 (4)

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
[Crossref]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

2014 (1)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

2013 (3)

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

2012 (1)

2011 (3)

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (2)

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem Solid St 13(4), J32–J34 (2010).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

2007 (2)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

2003 (2)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref] [PubMed]

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

2001 (1)

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

1998 (1)

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

1997 (1)

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–4, 287–289 (1997).
[Crossref]

1996 (2)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

1988 (1)

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Alahrache, S.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Allix, M.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Basavaraju, N.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Bessiere, A.

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Bessière, A.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Binet, L.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

Bos, A. J. J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Brito, H. F.

Butashin, A. V.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Chenu, S.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Demidovich, A. A.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Dorenbos, P.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Emura, S.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

Fayon, F.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Gourier, D.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Hanada, T.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

Holsa, J.

Hu, Z. F.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
[Crossref]

Huang, H. J.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Jacquart, S.

Jeong, I. K.

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

Jia, D.

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem Solid St 13(4), J32–J34 (2010).
[Crossref]

Jolivet, J. P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Kaminskii, A. A.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Kang, H. I.

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

Kim, J. S.

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

Kim, T. W.

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

Koptev, V. G.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Kouadri-Boudjelthia, E. A.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Laamanen, T.

Lastusaari, M.

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Lecointre, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Lewis, L. A.

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem Solid St 13(4), J32–J34 (2010).
[Crossref]

Li, D. R.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
[Crossref]

Li, H.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Li, L.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

Lin, Y. H.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Lu, S. Z.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Malkamaki, M.

Massiot, D.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–4, 287–289 (1997).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Mho, S. I.

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

Mill, B. V.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Moon, H. S.

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

Moon, J. W.

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Ntziachristos, V.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref] [PubMed]

Oh, E. S.

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Park, H. L.

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Porcher, F.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Poumeyrol, T.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Priolkar, K.

Priolkar, K. R.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Ren, X. G.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Richard, C.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Rodrigues, L. C. V.

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Sharma, S.

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Sharma, S. K.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Shkadarevich, A. P.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Smet, P. F.

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Takasaki, H.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

Tang, Z. L.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Van den Eeckhout, K.

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Veron, E.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Viana, B.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Wang, X. J.

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem Solid St 13(4), J32–J34 (2010).
[Crossref]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Wang, X. X.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Wang, Y. H.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
[Crossref]

Weissleder, R.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref] [PubMed]

Xu, K.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
[Crossref]

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–4, 287–289 (1997).
[Crossref]

Ye, S.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Zhang, J. H.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Zhang, X.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Zhang, Z. T.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Zhao, H.

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
[Crossref]

Chem. Mater. (1)

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Electrochem Solid St (1)

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem Solid St 13(4), J32–J34 (2010).
[Crossref]

Inorg. Mater. (1)

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable Stimulated-Emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallocermanate structure,” Inorg. Mater. 24, 579–581 (1988).

Int. J. Inorg. Mater. (1)

J. W. Moon, H. S. Moon, E. S. Oh, H. I. Kang, J. S. Kim, H. L. Park, and T. W. Kim, “Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3,” Int. J. Inorg. Mater. 3(6), 575–578 (2001).
[Crossref]

J. Am. Chem. Soc. (1)

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

J. Ceram. Soc. Jpn. (1)

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Lumin. (1)

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–4, 287–289 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

N. Basavaraju, S. Sharma, A. Bessiere, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+; a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Mater. Chem. Phys. (1)

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Materials (Basel) (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Nat. Mater. (2)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Nat. Med. (1)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (3)

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB(2)O(4) spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

RSC Advances (2)

L. Li, Y. H. Wang, H. Li, H. J. Huang, and H. Zhao, “Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping,” RSC Advances 5(70), 57193–57200 (2015).
[Crossref]

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Persistent luminescent and photocatalytic properties of ZnxGa2O3+x (0.8 <= x <= 1) phosphors,” RSC Advances 5(27), 20972–20975 (2015).
[Crossref]

Solid State Commun. (1)

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron microscopic (SEM) images of the resulting Zn3Ga2Ge2O10:0.5%Cr3+, x%Ca2+ (x = 0, 1, 3, 5) powder samples. Scale bar, 2 µm.

Fig. 2
Fig. 2

X-ray diffraction (XRD) patterns of Zn3Ga2Ge2O10:0.5%Cr3+ codoped with Ca2+ of (d) null, (e) 1%, (f) 3%, and (g) 5%, in reference to the standard ones of (a) ZnGa2O4 (PDF 38-1240), (b) Zn2GeO4 (PDF 11-0687), and (c) GeO2 (PDF 65-8052)

Fig. 3
Fig. 3

(a) Photoluminescence, (b) normalized photoluminescence (normalized to the peak at 716 nm), and (c) excitation spectra of the samples Zn3(1-x)Ga1.99Ge2O10: 0.5%Cr3+, xCa2+ (x = 0,1%, 3%, 5%) and Zn2.91Ga1.99Ge2O9.91: 0.5%Cr3+. The emission intensity at 698 nm was monitored to acquire the excitation spectra of Fig. 3 (c).

Fig. 4
Fig. 4

(a) Afterglow decay curves of the samples Zn3(1-x)Ga1.99Ge2O10: 0.5%Cr3+, xCa2+ (x = 0,1%, 3%, 5%) and Zn2.91Ga1.99Ge2O9.91: 0.5%Cr3+. The samples were charged with 410 nm light for 60s, and then the time-lapsed emission intensity at 698 nm was recorded. (b) The persistent luminescence peak intensity at 698 nm for all the samples after 300 s stoppage of excitation light at 410 nm. (c) Afterglow spectra of Zn3Ga1.99Ge2O10:0.5%Cr3+, 3%Ca2+ (charged with 410 nm for 60s, recorded after 10 s stoppage of light excitation). (d) Thermoluminescence curves monitored at 695 nm over 25–250 °C for Zn3(1-x)Ga1.99Ge2O10: 0.5%Cr3+, xCa2+ (x = 0 and 3%). The samples were irradiated with 400 nm light for 5 min, and the curves were measured at 2 min after the stoppage of light irradiation.

Fig. 5
Fig. 5

Photographic images for persistent luminescence from the samples of Zn3(1-x)Ga1.99Ge2O10: 0.5%Cr3+, xCa2+ (x = 0,1%, 3%, 5%) post the stoppage of light excitation at 320 nm at defined time points. Prior to taking these photographs, the samples were exposed to light at 320 nm for 2 mins.

Fig. 6
Fig. 6

A schematic of the energy transfer mechanism of the persistent luminescence material Zn3(1-x)Ga1.99Ge2O10: 0.5%Cr3+, xCa2+ (x = 1%, 3%, 5%)

Metrics