Abstract

We present highly efficient high power single longitudinal mode waveguide lasers. Single mode operation was achieved by combining a tapered waveguide Bragg grating with a Yb:YAG crystalline waveguide laser in a hybrid approach. Both structures were fabricated by fs-laser writing. We achieved 1.59 W of output power in a single longitudinal mode and 4.71 W of output power with a spectral bandwidth of 38 pm. The slope efficiency was 66% and the laser threshold 92 mW.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings

P. Dekker, M. Ams, T. Calmano, S. Gross, C. Kränkel, G. Huber, and M. J. Withford
Opt. Express 23(15) 20195-20202 (2015)

2  W single-longitudinal-mode Yb:YAG distributed-feedback waveguide laser

Thomas Calmano, Martin Ams, Peter Dekker, Michael J. Withford, and Christian Kränkel
Opt. Lett. 42(14) 2734-2737 (2017)

Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser [Invited]

Thomas Calmano, Jörg Siebenmorgen, Anna-Greta Paschke, Christian Fiebig, Katrin Paschke, Götz Erbert, Klaus Petermann, and Günter Huber
Opt. Mater. Express 1(3) 428-433 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15(8), 431–433 (1990).
    [Crossref] [PubMed]
  2. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10(2), 65–67 (1985).
    [Crossref] [PubMed]
  3. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
    [Crossref] [PubMed]
  4. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
    [Crossref]
  5. W. H. Loh, B. N. Samson, L. Dong, and K. Hsu, “High Performance Single Frequency Fiber Grating-Based Erbium:Ytterbium-Codoped Fiber Lasers,” J. Lightwave Technol. 16(1), 114–118 (1998).
    [Crossref]
  6. M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics, aop DOI: https://doi.org/10.1515/nanoph-2016-0119 (2017).
    [Crossref]
  7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  8. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
    [Crossref]
  9. T. Calmano and S. Müller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
    [Crossref]
  10. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  11. P. Dekker, M. Ams, T. Calmano, S. Gross, C. Kränkel, G. Huber, and M. J. Withford, “Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings,” Opt. Express 23(15), 20195–20202 (2015).
    [Crossref] [PubMed]
  12. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 mum single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
    [Crossref] [PubMed]
  13. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
    [Crossref] [PubMed]
  14. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  15. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
    [Crossref]
  16. H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express 16(18), 14015–14023 (2008).
    [Crossref] [PubMed]
  17. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quant. Electron. 45 - 46, 3 - 160 (2016).
    [Crossref]
  18. T. Calmano, M. Ams, B. F. Johnston, P. Dekker, C. Kränkel, and M. J. Withford, “Single Longitudinal Mode Yb:YAG DFB Laser Fabricated by Ultrafast Laser Inscription,” in Advanced Solid State Lasers 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh5A.3.

2015 (2)

2014 (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2013 (1)

2012 (1)

2009 (2)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

2001 (1)

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

1998 (1)

1990 (1)

1989 (1)

1985 (1)

Ams, M.

Byer, R. L.

Calmano, T.

Cerullo, G.

Chen, F.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Dekker, P.

Della Valle, G.

Dong, L.

Eaton, S. M.

Festa, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Graf, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Gross, S.

Harder, C.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Hein, J.

Herman, P. R.

Ho, S.

Hsu, K.

Huber, G.

Kahle, M.

Kaluza, M. C.

Kane, T. J.

Keller, U.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Kloepfel, D.

Koerner, J.

Kränkel, C.

Kullberg, M. P.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Laporta, P.

Li, J.

Liebetrau, H.

Loh, W. H.

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mix, E.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Mooradian, A.

Moser, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Müller, S.

T. Calmano and S. Müller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

Osellame, R.

Paschke, A.-G.

Paschotta, R.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Samson, B. N.

Seifert, R.

Spühler, G. J.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Taccheo, S.

Vázquez de Aldana, J. R.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Vorholt, C.

Withford, M. J.

Zayhowski, J. J.

Zhang, H.

Appl. Phys. B (1)

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Calmano and S. Müller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Other (3)

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics, aop DOI: https://doi.org/10.1515/nanoph-2016-0119 (2017).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quant. Electron. 45 - 46, 3 - 160 (2016).
[Crossref]

T. Calmano, M. Ams, B. F. Johnston, P. Dekker, C. Kränkel, and M. J. Withford, “Single Longitudinal Mode Yb:YAG DFB Laser Fabricated by Ultrafast Laser Inscription,” in Advanced Solid State Lasers 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh5A.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for laser experiments using three different cavity configurations: bare waveguide, highly reflective end-mirror (HR), or WBG. The dichroic M1 separates pump and laser light.

Fig. 2
Fig. 2

Laser characteristics for Yb:YAG waveguide lasers in three different configurations. Bare waveguide (black dots), with highly reflective (blue traingles), with WBG (red squares).

Fig. 3
Fig. 3

Laser spectrum of Yb:YAG waveguide laser (a) without mirrors (black) and with high reflector (blue) and (b) with WBG at laser threshold (grey), 1.59 W (green) and 4.71 W (orange) output power.

Fig. 4
Fig. 4

Scanning Fabry-Perot laser spectrum of the hybrid Yb:YAG/WBG waveguide laser in single longitudinal mode operation at 1.59 W output power (green) and duel mode operation at 4.71 W output power (orange).