Abstract

In this paper, a simple thermal tunable metamaterial absorber with broadband absorption in the mid-infrared regime is designed and fabricated. The TiN/VO2/Al2O3/Al four-layer structure (with top Al circular patch arrays) introduces a specific dual-dielectric method to manipulate the coupling between standing wave and magnetic resonance for the metal-insulator-metal sandwich absorber. After structural optimization, the 80% absorption bandwidth reaches 2.9 μm in both simulation and experimental results. By virtue of the insulator-to-metal transition (IMT) of VO2, the reflectance increases from 5% to 42% by heating up the absorber from room temperature to 358 K leading to a relative stable radiation temperature at the crucial IMT stage (323~348 K). This design method is quite useful for active IR absorption (or camouflage) as well as thermal tuning.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency tunable near-infrared metamaterials based on VO2 phase transition

Matthew J. Dicken, Koray Aydin, Imogen M. Pryce, Luke A. Sweatlock, Elizabeth M. Boyd, Sameer Walavalkar, James Ma, and Harry A. Atwater
Opt. Express 17(20) 18330-18339 (2009)

Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration

Kamil Boratay Alici, Adil Burak Turhan, Costas M. Soukoulis, and Ekmel Ozbay
Opt. Express 19(15) 14260-14267 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  3. G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
    [Crossref]
  4. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  5. H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
    [Crossref]
  6. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  7. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  8. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  9. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
    [Crossref] [PubMed]
  10. D. Ruzmetov and S. Ramanathan, “Metal-Insulator Transition in Thin Film Vanadium Dioxide” in Thin Film Metal-Oxides (Springer US, 2010).
  11. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  12. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
    [Crossref] [PubMed]
  13. Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
    [Crossref]
  14. W. V. Hans, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2, between 0.25 and 5 eV,” Phys. Rev. 40(4), 737 (1968).
  15. S. Adachi, “Aluminum (Al),” in The Handbook on Optical Constants of Metals (World Scientific, 2012).
  16. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. D. Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid- infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
    [Crossref]
  17. E. D. Palik, “Aluminum Oxide (Al2O3)” in Handbook of Optical Constants of Solids II (Academic Press, 1991).
  18. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [Crossref] [PubMed]
  19. D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
    [Crossref]
  20. G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
    [Crossref] [PubMed]
  21. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2003), Chap. 3.
  22. G. Kirchhoff, “Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht,” Ann. Phys. 185(2), 275–301 (2010).
    [Crossref]
  23. L. Boltzmann, “Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie,” Ann. Phys. 258(6), 291–294 (1884).
    [Crossref]
  24. T. Huang, L. Yang, J. Qin, F. Huang, X. P. Zhu, P. H. Zhou, B. Peng, H. G. Duan, L. J. Deng, and L. Bi, “Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films,” Opt. Mater. Express 6(11), 3609–3621 (2016).
    [Crossref]

2017 (1)

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (2)

2013 (2)

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

2012 (6)

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref] [PubMed]

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

2010 (1)

G. Kirchhoff, “Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht,” Ann. Phys. 185(2), 275–301 (2010).
[Crossref]

2009 (1)

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

1968 (1)

W. V. Hans, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2, between 0.25 and 5 eV,” Phys. Rev. 40(4), 737 (1968).

1884 (1)

L. Boltzmann, “Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie,” Ann. Phys. 258(6), 291–294 (1884).
[Crossref]

Abbas, M. N.

Atwater, H. A.

Aydin, K.

Bagheri, S.

Barker, A. S.

W. V. Hans, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2, between 0.25 and 5 eV,” Phys. Rev. 40(4), 737 (1968).

Basov, D. N.

Berglund, C. N.

W. V. Hans, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2, between 0.25 and 5 eV,” Phys. Rev. 40(4), 737 (1968).

Berrier, A.

Bi, L.

Blanchard, R.

Boltzmann, L.

L. Boltzmann, “Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie,” Ann. Phys. 258(6), 291–294 (1884).
[Crossref]

Boyd, E. M.

Capasso, F.

Chang, Y. C.

Cheng, C. W.

Cheng, D. M.

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

Chiu, C. W.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Deng, L.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
[Crossref] [PubMed]

Deng, L. J.

T. Huang, L. Yang, J. Qin, F. Huang, X. P. Zhu, P. H. Zhou, B. Peng, H. G. Duan, L. J. Deng, and L. Bi, “Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films,” Opt. Mater. Express 6(11), 3609–3621 (2016).
[Crossref]

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

Deng, L. W.

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

Dicken, M. J.

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Du, J.

Duan, H. G.

Economon, E. N.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Feng, Q.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Genevet, P.

Giessen, H.

Gissibl, T.

Hans, W. V.

W. V. Hans, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2, between 0.25 and 5 eV,” Phys. Rev. 40(4), 737 (1968).

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Hu, C.

Hu, E. L.

Hu, X.

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

Huang, F.

Huang, T.

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Kats, M. A.

Kirchhoff, G.

G. Kirchhoff, “Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht,” Ann. Phys. 185(2), 275–301 (2010).
[Crossref]

Knize, R. J.

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

Koschny, T.

Lai, K. T.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Liang, D. F.

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

Loh, K. P.

Lu, S. B.

Lu, Y. L.

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

Luo, X.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
[Crossref] [PubMed]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref] [PubMed]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, J.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nie, G.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Peng, B.

Pryce, I. M.

Pu, M.

Qazilbash, M. M.

Qin, J.

Ramanathan, S.

Richter, G.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shi, J.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Shi, Q.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Shih, M. H.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

Stauden, T.

Sterl, F.

Sweatlock, L. A.

Tang, D. Y.

Tittl, A.

Walavalkar, S.

Walter, R.

Wang, C. D.

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

Wen, S. C.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Xie, J.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
[Crossref] [PubMed]

Xie, J. L.

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, R.

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

Yang, L.

Yang, Z.

Zgrabik, C. M.

Zhang, H.

Zhang, H. B.

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

Zhang, N.

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

Zhang, X. R.

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

Zhen, G.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
[Crossref] [PubMed]

Zheng, J.

Zhou, J.

Zhou, P.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
[Crossref] [PubMed]

Zhou, P. H.

T. Huang, L. Yang, J. Qin, F. Huang, X. P. Zhu, P. H. Zhou, B. Peng, H. G. Duan, L. J. Deng, and L. Bi, “Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films,” Opt. Mater. Express 6(11), 3609–3621 (2016).
[Crossref]

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

Zhu, X. P.

Zhu, Z.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Zuani, S. D.

Ann. Phys. (2)

G. Kirchhoff, “Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht,” Ann. Phys. 185(2), 275–301 (2010).
[Crossref]

L. Boltzmann, “Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie,” Ann. Phys. 258(6), 291–294 (1884).
[Crossref]

Appl. Phys. Lett. (2)

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Energy Build. (1)

Y. Zhao, R. Xu, X. R. Zhang, X. Hu, R. J. Knize, and Y. L. Lu, “Simulation of smart windows in the ZnO/VO2 /ZnS sandwiched structure with improved thermochromic properties,” Energy Build. 66, 545–552 (2013).
[Crossref]

J. Appl. Phys. (1)

H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern,” J. Appl. Phys. 112(1), 014106 (2012).
[Crossref]

Josa B (1)

D. M. Cheng, J. L. Xie, H. B. Zhang, C. D. Wang, N. Zhang, and L. J. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” Josa B 29(6), 1503–1510 (2012).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Rev. (1)

W. V. Hans, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2, between 0.25 and 5 eV,” Phys. Rev. 40(4), 737 (1968).

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7, 46093 (2017).
[Crossref] [PubMed]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Other (4)

S. Adachi, “Aluminum (Al),” in The Handbook on Optical Constants of Metals (World Scientific, 2012).

D. Ruzmetov and S. Ramanathan, “Metal-Insulator Transition in Thin Film Vanadium Dioxide” in Thin Film Metal-Oxides (Springer US, 2010).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2003), Chap. 3.

E. D. Palik, “Aluminum Oxide (Al2O3)” in Handbook of Optical Constants of Solids II (Academic Press, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of a unit cell of the thermal tunable infrared absorber. (b) Simulated and measured reflectance of the absorber at room temperature.

Fig. 2
Fig. 2

The chromaticity diagram of reflectance with the thickness of VO2 (t2) varying from 0.1 μm to 1.5 μm (the dash lines are computed by Eq. (5).

Fig. 3
Fig. 3

The electric/magnetic field amplitude distribution at λMP* = 9 μm with t2 = 560 nm. (a) The amplitude distribution of electric field in zox plane at y = 0 and (b) The amplitude distribution of magnetic field in zox plane at y = 0. (c) Schematic of a unit cell of the typical infrared sandwich metamaterial absorber/emitter. (d)The equivalent circuit model of magnetic resonance.

Fig. 4
Fig. 4

(a) The reflectance measured by FTIR at different temperatures (heating process). (b) The infrared images measured by Forward Looking Infrared (FLIR working at 8-14μm) camera at different temperatures (To, Tr and eavg are the true temperature, radiation temperature and average emissivity).

Fig. 5
Fig. 5

The radiation temperatures and average emissivity at different temperatures both in heating cycle and cooling cycle.

Fig. 6
Fig. 6

(a)Measuring magnetic resonant peak and (b) the reflectance at the wavelength of 4.5 μm with the temperature ranging from 303 K to 358 K.

Fig. 7
Fig. 7

The measured and fitted dielectric constant of VO2. (a) at 303 K. (b) at 358 K.

Tables (1)

Tables Icon

Table 1 Fitting Parameters of the Drude-Lorentz model expressed by Eq. (8)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ Mp =2πdc ε r
2 t 3 2π λ A l 2 O 3 + 2 t 2 2π λ V O 2 =( 2n1 )π
λ sn = 4 t 3 n A l 2 O 3 +4 t 2 n V O 2 2n1
λ sn = 4( t 2 + t 3 ) ε r 2n1
λ sn t 2 > λ Mp t 2 >0
e = λ A λ
T r = T 0 e( T 0 ) 4
ε(ω)= ε ω p 2 ω 2 +iω γ p + k=1 N S k ω k 2 ω k 2 ω 2 iω γ k

Metrics