Abstract

In this work we present a fabrication process to obtain a low-loss waveguide in the photo-curable resin SU-8 using direct laser writing at 405 nm wavelength. Polymer-based devices offer low-cost prototype fabrication, fabrication flexibility, reliability, low power consumption and potential for mass production. These characteristics, coupled with its high optical performance and low propagation losses, make it an attractive material for applications related to optical biosensing. Initially, a method to reduce SU-8 viscosity is described to allow film thicknesses of a few hundred nanometers, thus guaranteeing single mode propagation at visible range. This is achieved while also introducing an H-nu 470 photoinitiator, providing the displacement of the absorption peak of the material from 365 nm to 470 nm, thus allowing H-line polymerization and the direct laser writing at wavelengths 405 nm and above. Key material and structure characteristics such as absorbance, transmittance, roughness and chemical composition on the surface are analyzed for both pure and modified SU-8. We observe lower RMS surface roughness in the latter one. In spite of the chemical modification of the material, optical parameters like absorption and refractive index in the wavelength of interest are not affected. Single- and multimode optical waveguides are demonstrated. The sidewall roughness is measured at 5.6 nm, and the propagation loss for the single mode waveguide is 4.4 dB/cm at 633 nm wavelength, providing a high quality and low-cost fabrication platform for optical nano-devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric barrier discharge plasma treatment of modified SU-8 for biosensing applications

Jhonattan C. Ramirez, Juliana N. Schianti, Denio E. P. Souto, Lauro T. Kubota, Hugo E. Hernandez-Figueroa, and Lucas H. Gabrielli
Biomed. Opt. Express 9(5) 2168-2175 (2018)

Adjustable refractive index modulation for a waveguide with SU-8 photoresist by dual-UV exposure lithography

Biow Hiem Ong, Xiaocong Yuan, and Swee Chuan Tjin
Appl. Opt. 45(31) 8036-8039 (2006)

3D direct laser writing using a 405  nm diode laser

Patrick Mueller, Michael Thiel, and Martin Wegener
Opt. Lett. 39(24) 6847-6850 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
    [Crossref]
  2. T. Toury, S. Brasselet, and J. Zyss, “Electro-optical microscopy: mapping nonlinear polymer films with micrometric resolution,” Opt. Lett. 31(10), 1468–1470 (2006).
    [Crossref] [PubMed]
  3. C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
    [Crossref] [PubMed]
  4. J. J. Ju, J. Kim, J. Y. Do, M. S. Kim, S. K. Park, S. Park, and M. H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29(1), 89–91 (2004).
    [Crossref] [PubMed]
  5. J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multi-dimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
    [Crossref]
  6. J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nature Commun. 7, 2041 (2016).
    [Crossref]
  7. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
    [Crossref]
  8. X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
    [Crossref] [PubMed]
  9. C. H. Chan, T. Y. Wu, M. H. Yen, C. E. Lin, K. T. Cheng, and C. C. Chen, “Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres,” Opt. Express 24(26), 29963–29971 (2016).
    [Crossref]
  10. M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).
  11. M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83, 1291–1293 (2006).
    [Crossref]
  12. D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
    [Crossref]
  13. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
    [Crossref]
  14. J. Zhang, K. L. Tan, and H. Q. Gong, “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS),” Polymer Testing 20(6), 693–701 (2001).
    [Crossref]
  15. B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).
  16. K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
    [Crossref]
  17. Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
    [Crossref] [PubMed]
  18. Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
    [Crossref]
  19. D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).
  20. B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
    [Crossref]
  21. K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” J. Appl. Phys. A 80, 621–626 (2005).
    [Crossref]
  22. J. Kim and J. H. Shin, “Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip,” Scientific Reports 6, 33842(2016).
  23. D. Y. Kang, C. Kim, G. Park, and J. H. Moon, “Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity,” Sci. Rep. 5, 18185 (2015).
  24. Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
    [Crossref]
  25. M. B. de la Calle, Y. Madrid, and C. Camara, “Speciation of antimony by atomic absorption spectrometry. Applicability to selective determination of Sb(III) and Sb(V) in liquid samples and of bioavailable antimony in sediments and soil samples,” Microchimica Acta 109, 149–155 (1992).
    [Crossref]
  26. M. Thiel, J. Fischer, G. Von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” App. Phys. Lett.  97, 221102 (2010).
    [Crossref]
  27. X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3, 1489–1492 (2011).
    [Crossref] [PubMed]
  28. C. H. Lee, K. Jiang, and G. J. Davies, “Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents,” Mater. Character. 58(7), 603–609 (2007)
    [Crossref]
  29. R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for gray scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
    [Crossref]
  30. J. Kim, D. C. Joy, and S. Y. Lee, “Controlling Resist Thickness and Etch Depth for Fabrication of 3D Structures in Electron-Beam Grayscale Lithography,” Microelectron. Eng. 84, 2859–2864 (2007).
    [Crossref]
  31. L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromechan. Syst. 18(2), 308–315 (2009).
    [Crossref]
  32. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nature Commun. 3(3), 2232 (2012).
    [Crossref]
  33. J. C. Ramirez, L. M. Lechuga, L. H. Gabrielli, and H. E. Hernandez-Figueroa, “Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors,” Opt. Express 23(9), 11985 (2015).
    [Crossref]
  34. K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightw. Tech. 29(13), 1926–1930 (2011).
    [Crossref]
  35. P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43(1), 79–83 (2014)
    [Crossref]

2016 (7)

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

C. H. Chan, T. Y. Wu, M. H. Yen, C. E. Lin, K. T. Cheng, and C. C. Chen, “Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres,” Opt. Express 24(26), 29963–29971 (2016).
[Crossref]

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multi-dimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nature Commun. 7, 2041 (2016).
[Crossref]

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

J. Kim and J. H. Shin, “Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip,” Scientific Reports 6, 33842(2016).

2015 (4)

D. Y. Kang, C. Kim, G. Park, and J. H. Moon, “Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity,” Sci. Rep. 5, 18185 (2015).

J. C. Ramirez, L. M. Lechuga, L. H. Gabrielli, and H. E. Hernandez-Figueroa, “Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors,” Opt. Express 23(9), 11985 (2015).
[Crossref]

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
[Crossref]

2014 (3)

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43(1), 79–83 (2014)
[Crossref]

2012 (4)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nature Commun. 3(3), 2232 (2012).
[Crossref]

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

2011 (2)

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightw. Tech. 29(13), 1926–1930 (2011).
[Crossref]

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3, 1489–1492 (2011).
[Crossref] [PubMed]

2010 (2)

M. Thiel, J. Fischer, G. Von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” App. Phys. Lett.  97, 221102 (2010).
[Crossref]

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
[Crossref] [PubMed]

2009 (2)

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromechan. Syst. 18(2), 308–315 (2009).
[Crossref]

2007 (3)

J. Kim, D. C. Joy, and S. Y. Lee, “Controlling Resist Thickness and Etch Depth for Fabrication of 3D Structures in Electron-Beam Grayscale Lithography,” Microelectron. Eng. 84, 2859–2864 (2007).
[Crossref]

C. H. Lee, K. Jiang, and G. J. Davies, “Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents,” Mater. Character. 58(7), 603–609 (2007)
[Crossref]

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

2006 (3)

T. Toury, S. Brasselet, and J. Zyss, “Electro-optical microscopy: mapping nonlinear polymer films with micrometric resolution,” Opt. Lett. 31(10), 1468–1470 (2006).
[Crossref] [PubMed]

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83, 1291–1293 (2006).
[Crossref]

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for gray scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

2005 (1)

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” J. Appl. Phys. A 80, 621–626 (2005).
[Crossref]

2004 (1)

2001 (1)

J. Zhang, K. L. Tan, and H. Q. Gong, “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS),” Polymer Testing 20(6), 693–701 (2001).
[Crossref]

1997 (1)

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

1992 (1)

M. B. de la Calle, Y. Madrid, and C. Camara, “Speciation of antimony by atomic absorption spectrometry. Applicability to selective determination of Sb(III) and Sb(V) in liquid samples and of bioavailable antimony in sediments and soil samples,” Microchimica Acta 109, 149–155 (1992).
[Crossref]

Aikio, S.

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

Ajayan, P. M.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

Asakawa, K.

K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
[Crossref]

Brasselet, S.

Brittman, S.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Brown, D. K.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for gray scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Camara, C.

M. B. de la Calle, Y. Madrid, and C. Camara, “Speciation of antimony by atomic absorption spectrometry. Applicability to selective determination of Sb(III) and Sb(V) in liquid samples and of bioavailable antimony in sediments and soil samples,” Microchimica Acta 109, 149–155 (1992).
[Crossref]

Carlen, E. T.

K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
[Crossref]

Chan, C. H.

Chang, C.

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
[Crossref] [PubMed]

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Chen, C. C.

Chen, X.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Cheng, K. T.

Dai, D. D. D.

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

Dante, S.

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

Davies, G. J.

C. H. Lee, K. Jiang, and G. J. Davies, “Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents,” Mater. Character. 58(7), 603–609 (2007)
[Crossref]

Day, R. W.

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

de la Calle, M. B.

M. B. de la Calle, Y. Madrid, and C. Camara, “Speciation of antimony by atomic absorption spectrometry. Applicability to selective determination of Sb(III) and Sb(V) in liquid samples and of bioavailable antimony in sediments and soil samples,” Microchimica Acta 109, 149–155 (1992).
[Crossref]

Despont, M.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

Dey, P. K.

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43(1), 79–83 (2014)
[Crossref]

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Do, J. Y.

Domínguez, C.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightw. Tech. 29(13), 1926–1930 (2011).
[Crossref]

Duval, D.

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

Eubanks, T.

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

Fernandez, L. J.

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

Ferrer, D.

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

Fischer, J.

M. Thiel, J. Fischer, G. Von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” App. Phys. Lett.  97, 221102 (2010).
[Crossref]

Fleger, M.

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83, 1291–1293 (2006).
[Crossref]

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Fu, A.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Fuh, Y. K.

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
[Crossref] [PubMed]

Gabrielli, L. H.

J. C. Ramirez, L. M. Lechuga, L. H. Gabrielli, and H. E. Hernandez-Figueroa, “Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors,” Opt. Express 23(9), 11985 (2015).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nature Commun. 3(3), 2232 (2012).
[Crossref]

Ganguly, P.

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43(1), 79–83 (2014)
[Crossref]

Gao, R.

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

Ghodssi, R.

L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromechan. Syst. 18(2), 308–315 (2009).
[Crossref]

Gong, H. Q.

J. Zhang, K. L. Tan, and H. Q. Gong, “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS),” Polymer Testing 20(6), 693–701 (2001).
[Crossref]

Gonzalez-Guerrero, A. B.

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

González-Guerrero, A. B.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightw. Tech. 29(13), 1926–1930 (2011).
[Crossref]

Guo, L. J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Hao, J.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Harb, A.

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

He, S. H. S.

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

Hernandez-Figueroa, H. E.

Hillerkuss, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Hiltunen, J.

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

Hiltunen, M.

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

Hong, S.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Hu, R. H. R.

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

Jeong, S.

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nature Commun. 7, 2041 (2016).
[Crossref]

Jiang, K.

C. H. Lee, K. Jiang, and G. J. Davies, “Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents,” Mater. Character. 58(7), 603–609 (2007)
[Crossref]

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nature Commun. 3(3), 2232 (2012).
[Crossref]

Joy, D. C.

J. Kim, D. C. Joy, and S. Y. Lee, “Controlling Resist Thickness and Etch Depth for Fabrication of 3D Structures in Electron-Beam Grayscale Lithography,” Microelectron. Eng. 84, 2859–2864 (2007).
[Crossref]

Ju, J. J.

Jung, H. Y.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Jung, Y. J.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Kang, D. Y.

D. Y. Kang, C. Kim, G. Park, and J. H. Moon, “Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity,” Sci. Rep. 5, 18185 (2015).

Karioja, P.

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

Kim, C.

D. Y. Kang, C. Kim, G. Park, and J. H. Moon, “Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity,” Sci. Rep. 5, 18185 (2015).

Kim, J.

J. Kim and J. H. Shin, “Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip,” Scientific Reports 6, 33842(2016).

J. Kim, D. C. Joy, and S. Y. Lee, “Controlling Resist Thickness and Etch Depth for Fabrication of 3D Structures in Electron-Beam Grayscale Lithography,” Microelectron. Eng. 84, 2859–2864 (2007).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M. S. Kim, S. K. Park, S. Park, and M. H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29(1), 89–91 (2004).
[Crossref] [PubMed]

Kim, M. S.

Kim, Y. L.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Kohl, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Kong, Q.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Kornienko, N.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Kurki, L.

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

LaBianca, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

Lechuga, L. M.

J. C. Ramirez, L. M. Lechuga, L. H. Gabrielli, and H. E. Hernandez-Figueroa, “Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors,” Opt. Express 23(9), 11985 (2015).
[Crossref]

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightw. Tech. 29(13), 1926–1930 (2011).
[Crossref]

Lee, C. H.

C. H. Lee, K. Jiang, and G. J. Davies, “Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents,” Mater. Character. 58(7), 603–609 (2007)
[Crossref]

Lee, J. Y.

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nature Commun. 7, 2041 (2016).
[Crossref]

Lee, M. H.

Lee, S. Y.

J. Kim, D. C. Joy, and S. Y. Lee, “Controlling Resist Thickness and Etch Depth for Fabrication of 3D Structures in Electron-Beam Grayscale Lithography,” Microelectron. Eng. 84, 2859–2864 (2007).
[Crossref]

Leuthold, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Li, B.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Lieber, C. M.

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

Lin, C. E.

Lin, L.

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
[Crossref] [PubMed]

Lin, Y.

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

Lipson, M.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nature Commun. 3(3), 2232 (2012).
[Crossref]

Liu, C.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nature Commun. 3(3), 2232 (2012).
[Crossref]

Liu, Q. L. Q.

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

Lozano, K.

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

Ma, X.

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3, 1489–1492 (2011).
[Crossref] [PubMed]

Madrid, Y.

M. B. de la Calle, Y. Madrid, and C. Camara, “Speciation of antimony by atomic absorption spectrometry. Applicability to selective determination of Sb(III) and Sb(V) in liquid samples and of bioavailable antimony in sediments and soil samples,” Microchimica Acta 109, 149–155 (1992).
[Crossref]

Mankin, M. N.

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

Martin, K. P.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for gray scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Meindl, J. D.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for gray scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Melikyan, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Monge, R.

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

Moon, J. H.

D. Y. Kang, C. Kim, G. Park, and J. H. Moon, “Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity,” Sci. Rep. 5, 18185 (2015).

Morgan, B.

L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromechan. Syst. 18(2), 308–315 (2009).
[Crossref]

Mosher, L.

L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromechan. Syst. 18(2), 308–315 (2009).
[Crossref]

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Murali, R.

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for gray scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Neyer, A.

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83, 1291–1293 (2006).
[Crossref]

No, Y. S.

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

Noh, J.

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nature Commun. 7, 2041 (2016).
[Crossref]

Okubo, K.

K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
[Crossref]

Osmond, J.

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Park, G.

D. Y. Kang, C. Kim, G. Park, and J. H. Moon, “Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity,” Sci. Rep. 5, 18185 (2015).

Park, H. G.

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

Park, S.

Park, S. K.

Parks, J. W.

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multi-dimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

Ponce, D. R.

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

Pun, E. Y. B.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” J. Appl. Phys. A 80, 621–626 (2005).
[Crossref]

Ramirez, J. C.

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

Robinson, J. T.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Schmidt, H.

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multi-dimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

Shen, A. Q.

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

Sheng, Z. S. Z.

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

Shin, J. H.

J. Kim and J. H. Shin, “Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip,” Scientific Reports 6, 33842(2016).

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Stenberg, P.

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

Su, Y.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Suzuki, H.

K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
[Crossref]

Tan, K. L.

J. Zhang, K. L. Tan, and H. Q. Gong, “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS),” Polymer Testing 20(6), 693–701 (2001).
[Crossref]

Tang, J.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Thiel, M.

M. Thiel, J. Fischer, G. Von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” App. Phys. Lett.  97, 221102 (2010).
[Crossref]

Toury, T.

Tran, V. H.

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
[Crossref] [PubMed]

Tung, K. K.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” J. Appl. Phys. A 80, 621–626 (2005).
[Crossref]

Uchiyamada, K.

K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
[Crossref]

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Vettiger, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

Von Freymann, G.

M. Thiel, J. Fischer, G. Von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” App. Phys. Lett.  97, 221102 (2010).
[Crossref]

Waits, C. M.

L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromechan. Syst. 18(2), 308–315 (2009).
[Crossref]

Wan, K. T.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Wang, J.

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

Wang, X.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Wegener, M.

M. Thiel, J. Fischer, G. Von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” App. Phys. Lett.  97, 221102 (2010).
[Crossref]

Wei, J.

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3, 1489–1492 (2011).
[Crossref] [PubMed]

Wong, W. H.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” J. Appl. Phys. A 80, 621–626 (2005).
[Crossref]

Wu, T. Y.

Xu, H.

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

Yang, B. Y. B.

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

Yang, F.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Yang, L. Y. L.

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

Yang, P.

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Yang, X.

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

Yang, Y.

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

Yen, M. H.

Yokokawa, M.

K. Uchiyamada, K. Okubo, M. Yokokawa, E. T. Carlen, K. Asakawa, and H. Suzuki, “Micron scale directional coupler as a transducer for biochemical sensing,” Opt. Express 23(13), 1094–4087 (2015).
[Crossref]

Zalalutdinov, M.

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

Zhang, C.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Zhang, D.

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

Zhang, J.

J. Zhang, K. L. Tan, and H. Q. Gong, “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS),” Polymer Testing 20(6), 693–701 (2001).
[Crossref]

Zhou, J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Zinoviev, K. E.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightw. Tech. 29(13), 1926–1930 (2011).
[Crossref]

Zyss, J.

ACS Nano (1)

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

App. Phys. Lett (1)

M. Thiel, J. Fischer, G. Von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” App. Phys. Lett.  97, 221102 (2010).
[Crossref]

J. Appl. Phys. A (1)

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” J. Appl. Phys. A 80, 621–626 (2005).
[Crossref]

J. Lightw. Tech. (2)

B. Y. B. Yang, L. Y. L. Yang, R. H. R. Hu, Z. S. Z. Sheng, D. D. D. Dai, Q. L. Q. Liu, and S. H. S. He, “Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer,” J. Lightw. Tech. 27, 4091–4096 (2009).
[Crossref]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightw. Tech. 29(13), 1926–1930 (2011).
[Crossref]

J. Microelectromechan. Syst. (1)

L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromechan. Syst. 18(2), 308–315 (2009).
[Crossref]

J. of Microm. and Microeng. (1)

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. of Microm. and Microeng. 7(3), 121 (1997).
[Crossref]

J. Opt. (1)

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43(1), 79–83 (2014)
[Crossref]

J. Vac. Sci. Technol. B (1)

R. Murali, D. K. Brown, K. P. Martin, and J. D. Meindl, “Process optimization and proximity effect correction for gray scale e-beam lithography,” J. Vac. Sci. Technol. B 24(6), 2936–2939 (2006).
[Crossref]

Journal of Polymer Science Part B: Polymer Physics (1)

D. R. Ponce, K. Lozano, T. Eubanks, A. Harb, D. Ferrer, and Y. Lin, “Thermophysical Analysis of SU8-Modified Microstructures Created by Visible Light Lithography,” Journal of Polymer Science Part B: Polymer Physics 45, 1390–1398 (2007).

Lab on a Chip (1)

Q. Wang, D. Zhang, H. Xu, X. Yang, A. Q. Shen, and Y. Yang, “Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles,” Lab on a Chip 12, 4781 (2012).
[Crossref]

Lab on Chip (1)

D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab on Chip 12, 1987–1994 (2012).
[Crossref]

Laser Photon. Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

Mater. Character. (1)

C. H. Lee, K. Jiang, and G. J. Davies, “Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents,” Mater. Character. 58(7), 603–609 (2007)
[Crossref]

Microchimica Acta (1)

M. B. de la Calle, Y. Madrid, and C. Camara, “Speciation of antimony by atomic absorption spectrometry. Applicability to selective determination of Sb(III) and Sb(V) in liquid samples and of bioavailable antimony in sediments and soil samples,” Microchimica Acta 109, 149–155 (1992).
[Crossref]

Microelectron. Eng. (2)

J. Kim, D. C. Joy, and S. Y. Lee, “Controlling Resist Thickness and Etch Depth for Fabrication of 3D Structures in Electron-Beam Grayscale Lithography,” Microelectron. Eng. 84, 2859–2864 (2007).
[Crossref]

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83, 1291–1293 (2006).
[Crossref]

Nano Lett. (2)

Y. S. No, R. Gao, M. N. Mankin, R. W. Day, H. G. Park, and C. M. Lieber, “Encoding Active Device Elements at Nanowire Tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, ”Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Lett. 10(2), 726–731 (2010).
[Crossref] [PubMed]

Nanoscale (1)

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3, 1489–1492 (2011).
[Crossref] [PubMed]

Nature Commun. (2)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nature Commun. 3(3), 2232 (2012).
[Crossref]

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nature Commun. 7, 2041 (2016).
[Crossref]

Nature Nanotech. (1)

Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, and P. Yang, “Single-nanowire photoelectrochemistry,” Nature Nanotech. 11(7), 609–612 (2016).
[Crossref]

Nature Photon. (1)

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nature Photon. 8, 229–233 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Polymer Testing (1)

J. Zhang, K. L. Tan, and H. Q. Gong, “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS),” Polymer Testing 20(6), 693–701 (2001).
[Crossref]

Sci. Rep. (3)

B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P. M. Ajayan, K. T. Wan, and Y. J. Jung, “Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface,” Sci. Rep. 5, 15908 (2015).

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multi-dimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

D. Y. Kang, C. Kim, G. Park, and J. H. Moon, “Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity,” Sci. Rep. 5, 18185 (2015).

Scientific Reports (1)

J. Kim and J. H. Shin, “Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip,” Scientific Reports 6, 33842(2016).

Sensors (1)

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, and P. Karioja,” Polymeric slot waveguide interferometer for sensor applications,” Sensors 22, 7229–7237 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Bulk modified SU-8 characterization. (a) Spin coating calibration curves for 2 different solid concentrations after dilution of the epoxy in cyclopentanone. (b) Surface roughness of the original SU-8 layer (14% solid) obtained by AFM. (c) Surface roughness of the SU-8 layer with the addition of the photoinitiator.
Fig. 2
Fig. 2 SU-8 surface composition. (a) Original SU-8 layer obtained by XPS. (b) SU-8 layer with the addition of the photoinitiator.
Fig. 3
Fig. 3 Scheme of the fabrication process. Fabrication steps for the polymerization of the modified SU-8 with 405 nm DLW.
Fig. 4
Fig. 4 Characterization of polymerization dose. (a) DLW dose calibration for 600 nm, 10 μm and 100 μm linewidth structures with a 5% transmission filter. (b) Same dose calibration as (a) but with a 15% transmission filter, i.e., overall 10% higher dose. (c) Same as (a) but with a 30% transmission filter (25% higher dose).
Fig. 5
Fig. 5 Scanning electron microscope images of the fabricated structures at different scales..
Fig. 6
Fig. 6 Optical characterization of the SU-8 with and without addition of the photoinitiator. (a) Absorbance and (b) transmittance curves show that the addition does not significantly impact the optical properties of the material for wavelengths beyond 400 nm.
Fig. 7
Fig. 7 Characterization of optical waveguides fabricated on SU-8 with the H-nu 470 photoinitiator. (a) Scanning electron microscope images of a few air-clad waveguides on a SiO2 layer. (b) Insertion loss measurement setup with objectives for coupling light in and out of the waveguides at 633 nm wavelength. (c) Propagation loss calculation based on a linear fit of the measured loss for waveguides of different lengths.

Tables (1)

Tables Icon

Table 1 Components of the modified SU-8 mixture for H-line lithography.

Metrics