Abstract

The synthesis of persistent luminescent, monoclinic SrAl2O4:Eu2+,Dy3+ traditionally employs high temperature solid state methods, which tends to generate large particles and agglomerates (>15 μm). Alternatively, soft chemical synthetic routes are conducive to forming significantly smaller particles of SrAl2O4:Eu2+,Dy3+; unfortunately, many of the reported routes lead to impure products, including the presence of the hexagonal SrAl2O4:Eu2+,Dy3+ polymorph and Sr4Al14O25:Eu2+,Dy3+. Here, the combination of a solution-based reverse micelle microemulusion synthesis route combined with rapid microwave-assisted heating is shown to produce nearly phase pure monoclinic SrAl2O4:Eu2+,Dy3+ with a ≈70% smaller equivalent spherical diameter (4.2 μm) compared to the all solid state prepared materials (14.3 μm). Optical characterization including photon excitation, photon emission, persistent luminescent lifetime, and thermoluminescence measurements support that the optical properties remain almost unchanged, regardless of synthetic route. These results validate that monoclinic SrAl2O4:Eu2+,Dy3+ produced using this pathway is viable as an alternative to the all solid state-prepared materials, with the added advantage of significantly smaller particles that may be desirable when architecting new potential applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near infrared photostimulated persistent luminescence and information storage of SrAl2O4:Eu2+,Dy3+ phosphor

Haibo Liu, Baoluo Feng, Li Luo, Chunlong Han, and Peter A. Tanner
Opt. Mater. Express 6(11) 3375-3385 (2016)

Feature issue introduction: persistent and photostimulable phosphors – an established research field with clear challenges ahead

Philippe F. Smet, Bruno Viana, Setsuhisa Tanabe, Mingying Peng, Jorma Hölsä, and Wei Chen
Opt. Mater. Express 6(4) 1414-1419 (2016)

Structure characteristics and afterglow of BaZr4(PO4)6 phosphor

Ruijin Yu, Maosen Yuan, Yonghua Xiong, Junbo Li, and Jinyi Wang
Opt. Mater. Express 6(4) 1049-1055 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu2+,Dy3+ persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
    [Crossref]
  2. N. Thompson, “An approach to the synthesis of strontium aluminate based nanophosphors,” (RMIT University, 2012).
  3. R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
    [Crossref]
  4. R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
    [Crossref]
  5. T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
    [Crossref] [PubMed]
  6. A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
    [Crossref] [PubMed]
  7. G. T. Hermanson, “Chapter 14 - Microparticles and Nanoparticles,” in Bioconjugate Techniques (Second Edition) (Academic Press, 2008).
  8. T. Riuttamäki, “Upconverting phosphor technology: exceptional photoluminescent properties light up homogeneous bioanalytical assays,” (Annales Universitatis Turkuensis, Tuku, 2011).
  9. N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
    [Crossref] [PubMed]
  10. R. May and Y. Li, “The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry,” Colloids Surf. A Physicochem. Eng. Asp. 418, 84–91 (2013).
    [Crossref]
  11. G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem. 393(2), 569–582 (2009).
    [Crossref] [PubMed]
  12. A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 2210–2251 (2013).
    [Crossref] [PubMed]
  13. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
    [Crossref]
  14. P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
    [Crossref]
  15. I.-C. Chen and T.-M. Chen, “Effect of host compositions on the afterglow properties of phosphorescent strontium aluminate phosphors derived from the sol-gel method,” J. Mater. Res. 16(05), 1293–1300 (2001).
    [Crossref]
  16. C.-H. Lu, S.-Y. Chen, and C.-H. Hsu, “Nanosized strontium aluminate phosphors prepared via a reverse microemulsion route,” J. Mater. Sci. Eng. B 140(3), 218–221 (2007).
    [Crossref]
  17. N. Thompson, P. Murugaraj, C. Rix, and D. E. Mainwaring, “Role of oxidative pre-calcination in extending blue emission of Sr4Al14O25 nanophosphors formed with microemulsions,” J. Alloys Compd. 537, 147–153 (2012).
    [Crossref]
  18. M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
    [Crossref] [PubMed]
  19. D. Si, B. Geng, and S. Wang, “One-step synthesis and morphology evolution of luminescent Eu2+ doped strontium aluminate nanostructures,” CrystEngComm 12(10), 2722–2727 (2010).
    [Crossref]
  20. H. Song, D. Chen, W. Tang, and Y. Peng, “Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties,” Displays 29(1), 41–44 (2008).
    [Crossref]
  21. H. Tanaka, A. V. Gubarevich, H. Wada, and O. Odawara, “Process stages during solution combustion synthesis of strontium aluminates,” Int. J. Self-Propag. High-Temp. Synth. 22(3), 151–156 (2013).
    [Crossref]
  22. R. Zhang, G. Han, L. Zhang, and B. Yang, “Gel combustion synthesis and luminescence properties of nanoparticles of monoclinic SrAl2O4: Eu2+, Dy3+,” Mater. Chem. Phys. 113(1), 255–259 (2009).
    [Crossref]
  23. A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
    [Crossref]
  24. R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
    [Crossref] [PubMed]
  25. C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
    [Crossref]
  26. W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
    [Crossref]
  27. Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
    [Crossref]
  28. R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
    [Crossref] [PubMed]
  29. R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
    [Crossref]
  30. S. Wu, S. Zhang, and J. Yang, “Influence of microwave process on photoluminescence of europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process,” Mater. Chem. Phys. 102(1), 80–85 (2007).
    [Crossref]
  31. W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
    [Crossref]
  32. A. C. V. D. Larson, R.B., “General Structure Analysis System (GSAS),” (2004).
  33. B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
    [Crossref]
  34. K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Cryst. 44(6), 1272–1276 (2011).
    [Crossref]
  35. L. Qi, “Synthesis of inorganic nanostructures in reverse micelles,” in Encyclopedia of Surface and Colloid Science, 2nd ed., P. Somasundaran, ed. (Taylor & Francis, 2006).
  36. S. A. Morrison, C. L. Cahill, E. E. Carpenter, and V. G. Harris, “Production scaleup of reverse micelle synthesis,” Ind. Eng. Chem. Res. 45(3), 1217–1220 (2006).
    [Crossref]
  37. M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
    [Crossref]
  38. S. Sharma and A. K. Ganguli, “Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures,” J. Phys. Chem. B 118(15), 4122–4131 (2014).
    [Crossref] [PubMed]
  39. A. R. Schulze and H. M. Buschbaum, “Zur Verbindungsbildung von MeO: M2O3. IV. Zur Struktur von monoklinem SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
    [Crossref]
  40. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  41. B. B. Srivastava, A. Kuang, and Y. Mao, “Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route,” Chem. Commun. (Camb.) 51(34), 7372–7375 (2015).
    [Crossref] [PubMed]
  42. S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
    [Crossref] [PubMed]
  43. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
    [Crossref]
  44. N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
    [Crossref]
  45. J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, and H. Hagemann, “Thermal and concentration dependent energy transfer of Eu2+ in SrAl2O4,” Opt. Mater. Express 6(3), 793–803 (2016).
    [Crossref]
  46. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
    [Crossref]
  47. T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
    [Crossref] [PubMed]
  48. M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
    [Crossref]
  49. W. Chen, Z. Wang, Z. Lin, and L. Lin, “Thermoluminescence of ZnS nanoparticles,” Appl. Phys. Lett. 70(11), 1465–1467 (1997).
    [Crossref]
  50. R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
    [Crossref]
  51. K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]
  52. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985).
  53. R. Chen, “Glow Curves with General Order Kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
    [Crossref]
  54. I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
    [Crossref]
  55. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O 4 : Eu2 +, Dy3 +,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  56. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, 1997).
  57. P. Dorenbos, “Mechanism of persistent luminescence in Eu2 + and Dy3 + codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
    [Crossref]
  58. W. Pannhorst and J. L. Ö. Hn, “Zur Kristallstruktur von Strontianit, SrCO3,” in Zeitschrift für Kristallographie - Crystalline Materials, (1970), p. 455.

2016 (2)

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, and H. Hagemann, “Thermal and concentration dependent energy transfer of Eu2+ in SrAl2O4,” Opt. Mater. Express 6(3), 793–803 (2016).
[Crossref]

2015 (6)

I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
[Crossref]

B. B. Srivastava, A. Kuang, and Y. Mao, “Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route,” Chem. Commun. (Camb.) 51(34), 7372–7375 (2015).
[Crossref] [PubMed]

R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
[Crossref]

R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
[Crossref]

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
[Crossref]

2014 (4)

S. Sharma and A. K. Ganguli, “Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures,” J. Phys. Chem. B 118(15), 4122–4131 (2014).
[Crossref] [PubMed]

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu2+,Dy3+ persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

2013 (6)

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

R. May and Y. Li, “The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry,” Colloids Surf. A Physicochem. Eng. Asp. 418, 84–91 (2013).
[Crossref]

A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 2210–2251 (2013).
[Crossref] [PubMed]

H. Tanaka, A. V. Gubarevich, H. Wada, and O. Odawara, “Process stages during solution combustion synthesis of strontium aluminates,” Int. J. Self-Propag. High-Temp. Synth. 22(3), 151–156 (2013).
[Crossref]

2012 (4)

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

N. Thompson, P. Murugaraj, C. Rix, and D. E. Mainwaring, “Role of oxidative pre-calcination in extending blue emission of Sr4Al14O25 nanophosphors formed with microemulsions,” J. Alloys Compd. 537, 147–153 (2012).
[Crossref]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

2011 (3)

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Cryst. 44(6), 1272–1276 (2011).
[Crossref]

2010 (1)

D. Si, B. Geng, and S. Wang, “One-step synthesis and morphology evolution of luminescent Eu2+ doped strontium aluminate nanostructures,” CrystEngComm 12(10), 2722–2727 (2010).
[Crossref]

2009 (4)

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref] [PubMed]

G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem. 393(2), 569–582 (2009).
[Crossref] [PubMed]

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

R. Zhang, G. Han, L. Zhang, and B. Yang, “Gel combustion synthesis and luminescence properties of nanoparticles of monoclinic SrAl2O4: Eu2+, Dy3+,” Mater. Chem. Phys. 113(1), 255–259 (2009).
[Crossref]

2008 (1)

H. Song, D. Chen, W. Tang, and Y. Peng, “Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties,” Displays 29(1), 41–44 (2008).
[Crossref]

2007 (5)

C.-H. Lu, S.-Y. Chen, and C.-H. Hsu, “Nanosized strontium aluminate phosphors prepared via a reverse microemulsion route,” J. Mater. Sci. Eng. B 140(3), 218–221 (2007).
[Crossref]

P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
[Crossref]

S. Wu, S. Zhang, and J. Yang, “Influence of microwave process on photoluminescence of europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process,” Mater. Chem. Phys. 102(1), 80–85 (2007).
[Crossref]

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

2006 (1)

S. A. Morrison, C. L. Cahill, E. E. Carpenter, and V. G. Harris, “Production scaleup of reverse micelle synthesis,” Ind. Eng. Chem. Res. 45(3), 1217–1220 (2006).
[Crossref]

2005 (3)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2 + and Dy3 + codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

2004 (2)

M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
[Crossref]

W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
[Crossref]

2002 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
[Crossref]

2001 (2)

I.-C. Chen and T.-M. Chen, “Effect of host compositions on the afterglow properties of phosphorescent strontium aluminate phosphors derived from the sol-gel method,” J. Mater. Res. 16(05), 1293–1300 (2001).
[Crossref]

B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
[Crossref]

1997 (1)

W. Chen, Z. Wang, Z. Lin, and L. Lin, “Thermoluminescence of ZnS nanoparticles,” Appl. Phys. Lett. 70(11), 1465–1467 (1997).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O 4 : Eu2 +, Dy3 +,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1995 (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

1981 (1)

A. R. Schulze and H. M. Buschbaum, “Zur Verbindungsbildung von MeO: M2O3. IV. Zur Struktur von monoklinem SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

1969 (1)

R. Chen, “Glow Curves with General Order Kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

Adachi, Y.

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

Ahmed, J.

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

Airenne, K. J.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
[Crossref]

Akram, M. S.

A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 2210–2251 (2013).
[Crossref] [PubMed]

Allix, M.

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O 4 : Eu2 +, Dy3 +,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Aroz, R.

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

Bessada, C.

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Bierwagen, J.

Birkel, A.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Birkel, C. S.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Bisen, D. P.

I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
[Crossref]

Blanco, M. C.

M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
[Crossref]

Blasse, G.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Blokpoel, W. P.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Bos, A. J. J.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Botterman, J.

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu2+,Dy3+ persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

Brahme, N.

I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
[Crossref]

Buschbaum, H. M.

A. R. Schulze and H. M. Buschbaum, “Zur Verbindungsbildung von MeO: M2O3. IV. Zur Struktur von monoklinem SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

Cahill, C. L.

S. A. Morrison, C. L. Cahill, E. E. Carpenter, and V. G. Harris, “Production scaleup of reverse micelle synthesis,” Ind. Eng. Chem. Res. 45(3), 1217–1220 (2006).
[Crossref]

Carpenter, E. E.

S. A. Morrison, C. L. Cahill, E. E. Carpenter, and V. G. Harris, “Production scaleup of reverse micelle synthesis,” Ind. Eng. Chem. Res. 45(3), 1217–1220 (2006).
[Crossref]

Cases, R.

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

Chakradhar, R. P. S.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Chen, D.

H. Song, D. Chen, W. Tang, and Y. Peng, “Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties,” Displays 29(1), 41–44 (2008).
[Crossref]

Chen, I.-C.

I.-C. Chen and T.-M. Chen, “Effect of host compositions on the afterglow properties of phosphorescent strontium aluminate phosphors derived from the sol-gel method,” J. Mater. Res. 16(05), 1293–1300 (2001).
[Crossref]

Chen, R.

R. Chen, “Glow Curves with General Order Kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

Chen, S.-Y.

C.-H. Lu, S.-Y. Chen, and C.-H. Hsu, “Nanosized strontium aluminate phosphors prepared via a reverse microemulsion route,” J. Mater. Sci. Eng. B 140(3), 218–221 (2007).
[Crossref]

Chen, T.-M.

I.-C. Chen and T.-M. Chen, “Effect of host compositions on the afterglow properties of phosphorescent strontium aluminate phosphors derived from the sol-gel method,” J. Mater. Res. 16(05), 1293–1300 (2001).
[Crossref]

Chen, W.

W. Chen, Z. Wang, Z. Lin, and L. Lin, “Thermoluminescence of ZnS nanoparticles,” Appl. Phys. Lett. 70(11), 1465–1467 (1997).
[Crossref]

Chen, Y.

W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

de la Fuente, G. F.

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

De La Rubia, M. A.

R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
[Crossref]

Denault, K. A.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Doll, C. E.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Dorenbos, P.

P. Dorenbos, “Mechanism of persistent luminescence in Eu2 + and Dy3 + codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

Enriquez, E.

R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
[Crossref]

Fernandez, J. F.

R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
[Crossref]

R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
[Crossref]

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Fu, H.-X.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Ganguli, A. K.

S. Sharma and A. K. Ganguli, “Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures,” J. Phys. Chem. B 118(15), 4122–4131 (2014).
[Crossref] [PubMed]

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

García Rio, L.

M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
[Crossref]

Gartmann, N.

Garvey, G.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Geng, B.

D. Si, B. Geng, and S. Wang, “One-step synthesis and morphology evolution of luminescent Eu2+ doped strontium aluminate nanostructures,” CrystEngComm 12(10), 2722–2727 (2010).
[Crossref]

George, N. C.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Gonçalves, R. H.

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Goundie, B.

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

Gubarevich, A. V.

H. Tanaka, A. V. Gubarevich, H. Wada, and O. Odawara, “Process stages during solution combustion synthesis of strontium aluminates,” Int. J. Self-Propag. High-Temp. Synth. 22(3), 151–156 (2013).
[Crossref]

Guo, D.

W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
[Crossref]

Hagemann, H.

Hagström, A. E. V.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Han, G.

R. Zhang, G. Han, L. Zhang, and B. Yang, “Gel combustion synthesis and luminescence properties of nanoparticles of monoclinic SrAl2O4: Eu2+, Dy3+,” Mater. Chem. Phys. 113(1), 255–259 (2009).
[Crossref]

Harris, V. G.

S. A. Morrison, C. L. Cahill, E. E. Carpenter, and V. G. Harris, “Production scaleup of reverse micelle synthesis,” Ind. Eng. Chem. Res. 45(3), 1217–1220 (2006).
[Crossref]

Herntrich, T.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref] [PubMed]

Héry, B.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Hölsä, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
[Crossref]

Hong, B.-C.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Hsu, C.-H.

C.-H. Lu, S.-Y. Chen, and C.-H. Hsu, “Nanosized strontium aluminate phosphors prepared via a reverse microemulsion route,” J. Mater. Sci. Eng. B 140(3), 218–221 (2007).
[Crossref]

Imai, Y.

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

Izumi, F.

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Cryst. 44(6), 1272–1276 (2011).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Joos, J. J.

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu2+,Dy3+ persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
[Crossref]

Kaida, Y.

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

Kaikkonen, M. U.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Kandpal, S. K.

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

Karmaoui, M.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref] [PubMed]

Kolhatkar, A.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Korf, J.

G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem. 393(2), 569–582 (2009).
[Crossref] [PubMed]

Kourentzi, K.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Krishna, R. H.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Kuang, A.

B. B. Srivastava, A. Kuang, and Y. Mao, “Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route,” Chem. Commun. (Camb.) 51(34), 7372–7375 (2015).
[Crossref] [PubMed]

Kusaba, H.

W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
[Crossref]

Lastusaari, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
[Crossref]

le Masne de Chermont, Q.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Lécuyer, T.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

Lee, T. R.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Leis, J. R.

M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
[Crossref]

Lennikov, V.

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

Li, C.

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

Li, L.

P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
[Crossref]

Li, Y.

R. May and Y. Li, “The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry,” Colloids Surf. A Physicochem. Eng. Asp. 418, 84–91 (2013).
[Crossref]

Li, Z.-J.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Lin, L.

W. Chen, Z. Wang, Z. Lin, and L. Lin, “Thermoluminescence of ZnS nanoparticles,” Appl. Phys. Lett. 70(11), 1465–1467 (1997).
[Crossref]

Lin, Z.

W. Chen, Z. Wang, Z. Lin, and L. Lin, “Thermoluminescence of ZnS nanoparticles,” Appl. Phys. Lett. 70(11), 1465–1467 (1997).
[Crossref]

Liu, C.-L.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Liu, L.

P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
[Crossref]

López-Quintela, M. A.

M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
[Crossref]

Lowe, C. R.

A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 2210–2251 (2013).
[Crossref] [PubMed]

Lu, C.-H.

C.-H. Lu, S.-Y. Chen, and C.-H. Hsu, “Nanosized strontium aluminate phosphors prepared via a reverse microemulsion route,” J. Mater. Sci. Eng. B 140(3), 218–221 (2007).
[Crossref]

Mafra, L.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref] [PubMed]

Mainwaring, D. E.

N. Thompson, P. Murugaraj, C. Rix, and D. E. Mainwaring, “Role of oxidative pre-calcination in extending blue emission of Sr4Al14O25 nanophosphors formed with microemulsions,” J. Alloys Compd. 537, 147–153 (2012).
[Crossref]

Maldiney, T.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Mao, Y.

B. B. Srivastava, A. Kuang, and Y. Mao, “Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route,” Chem. Commun. (Camb.) 51(34), 7372–7375 (2015).
[Crossref] [PubMed]

Mason, M. D.

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O 4 : Eu2 +, Dy3 +,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

May, R.

R. May and Y. Li, “The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry,” Colloids Surf. A Physicochem. Eng. Asp. 418, 84–91 (2013).
[Crossref]

Meulenberg, R. W.

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

Mignet, N.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

Mikhailovsky, A. A.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Mirkin, C. A.

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

Momma, K.

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Cryst. 44(6), 1272–1276 (2011).
[Crossref]

Momoda, R.

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

Morrison, S. A.

S. A. Morrison, C. L. Cahill, E. E. Carpenter, and V. G. Harris, “Production scaleup of reverse micelle synthesis,” Ind. Eng. Chem. Res. 45(3), 1217–1220 (2006).
[Crossref]

Muñoz, E.

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O 4 : Eu2 +, Dy3 +,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Murthy, N. S.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Murugaraj, P.

N. Thompson, P. Murugaraj, C. Rix, and D. E. Mainwaring, “Role of oxidative pre-calcination in extending blue emission of Sr4Al14O25 nanophosphors formed with microemulsions,” J. Alloys Compd. 537, 147–153 (2012).
[Crossref]

Nagabhushana, B. M.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Nagabhushana, H.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Niittykoski, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
[Crossref]

Nishikubo, K.

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
[Crossref]

Odawara, O.

H. Tanaka, A. V. Gubarevich, H. Wada, and O. Odawara, “Process stages during solution combustion synthesis of strontium aluminates,” Int. J. Self-Propag. High-Temp. Synth. 22(3), 151–156 (2013).
[Crossref]

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Paterson, A. S.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Peng, Y.

H. Song, D. Chen, W. Tang, and Y. Peng, “Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties,” Displays 29(1), 41–44 (2008).
[Crossref]

Pinna, N.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Pollock, R. A.

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

Poort, S. H. M.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Posthuma-Trumpie, G. A.

G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem. 393(2), 569–582 (2009).
[Crossref] [PubMed]

Qamar, M.

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

Raja, B.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Ramirez-Garcia, G.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

Ranjan, R.

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

Richard, C.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Rix, C.

N. Thompson, P. Murugaraj, C. Rix, and D. E. Mainwaring, “Role of oxidative pre-calcination in extending blue emission of Sr4Al14O25 nanophosphors formed with microemulsions,” J. Alloys Compd. 537, 147–153 (2012).
[Crossref]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Rodriguez, M. A.

R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
[Crossref]

Rodriguez, M. Á.

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Rojas-Hernandez, R. E.

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
[Crossref]

R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
[Crossref]

Rosi, N. L.

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

Rubio-Marcos, F.

R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
[Crossref]

R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
[Crossref]

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Sahu, I. P.

I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
[Crossref]

Sanjuán, M. L.

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

Scherman, D.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Schulze, A. R.

A. R. Schulze and H. M. Buschbaum, “Zur Verbindungsbildung von MeO: M2O3. IV. Zur Struktur von monoklinem SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

Seguin, J.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Serrano, A.

R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
[Crossref]

Seshadri, R.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Shan, W.

W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
[Crossref]

Sharma, S.

S. Sharma and A. K. Ganguli, “Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures,” J. Phys. Chem. B 118(15), 4122–4131 (2014).
[Crossref] [PubMed]

Sharma, S. C.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Shen, J.-S.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Shi, W. S.

W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
[Crossref]

Shivakumara, C.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Shrivastava, R.

I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
[Crossref]

Si, D.

D. Si, B. Geng, and S. Wang, “One-step synthesis and morphology evolution of luminescent Eu2+ doped strontium aluminate nanostructures,” CrystEngComm 12(10), 2722–2727 (2010).
[Crossref]

Smet, P. F.

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu2+,Dy3+ persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Song, H.

H. Song, D. Chen, W. Tang, and Y. Peng, “Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties,” Displays 29(1), 41–44 (2008).
[Crossref]

Srivastava, B. B.

B. B. Srivastava, A. Kuang, and Y. Mao, “Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route,” Chem. Commun. (Camb.) 51(34), 7372–7375 (2015).
[Crossref] [PubMed]

Sun, M.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O 4 : Eu2 +, Dy3 +,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tamrakar, R. K.

I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
[Crossref]

Tanaka, H.

H. Tanaka, A. V. Gubarevich, H. Wada, and O. Odawara, “Process stages during solution combustion synthesis of strontium aluminates,” Int. J. Self-Propag. High-Temp. Synth. 22(3), 151–156 (2013).
[Crossref]

Tang, W.

H. Song, D. Chen, W. Tang, and Y. Peng, “Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties,” Displays 29(1), 41–44 (2008).
[Crossref]

Tao, N.

W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
[Crossref]

Teston, E.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

Thaplyal, P.

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

Thompson, N.

N. Thompson, P. Murugaraj, C. Rix, and D. E. Mainwaring, “Role of oxidative pre-calcination in extending blue emission of Sr4Al14O25 nanophosphors formed with microemulsions,” J. Alloys Compd. 537, 147–153 (2012).
[Crossref]

Toby, B. H.

B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
[Crossref]

Tojo, C.

M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
[Crossref]

Vaidya, S.

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

van Amerongen, A.

G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem. 393(2), 569–582 (2009).
[Crossref] [PubMed]

Van den Eeckhout, K.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Véron, E.

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Viana, B.

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

Wada, H.

H. Tanaka, A. V. Gubarevich, H. Wada, and O. Odawara, “Process stages during solution combustion synthesis of strontium aluminates,” Int. J. Self-Propag. High-Temp. Synth. 22(3), 151–156 (2013).
[Crossref]

Walfort, B.

Wang, S.

D. Si, B. Geng, and S. Wang, “One-step synthesis and morphology evolution of luminescent Eu2+ doped strontium aluminate nanostructures,” CrystEngComm 12(10), 2722–2727 (2010).
[Crossref]

Wang, Z.

W. Chen, Z. Wang, Z. Lin, and L. Lin, “Thermoluminescence of ZnS nanoparticles,” Appl. Phys. Lett. 70(11), 1465–1467 (1997).
[Crossref]

Whangbo, M. H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Willinger, M.-G.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref] [PubMed]

Willson, R. C.

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Wright, J.

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

Wu, L.

W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
[Crossref]

Wu, S.

S. Wu, S. Zhang, and J. Yang, “Influence of microwave process on photoluminescence of europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process,” Mater. Chem. Phys. 102(1), 80–85 (2007).
[Crossref]

Xu, C. N.

W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
[Crossref]

Xu, C.-N.

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

Xu, M.

P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
[Crossref]

Yamada, H.

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
[Crossref]

Yang, B.

R. Zhang, G. Han, L. Zhang, and B. Yang, “Gel combustion synthesis and luminescence properties of nanoparticles of monoclinic SrAl2O4: Eu2+, Dy3+,” Mater. Chem. Phys. 113(1), 255–259 (2009).
[Crossref]

Yang, J.

S. Wu, S. Zhang, and J. Yang, “Influence of microwave process on photoluminescence of europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process,” Mater. Chem. Phys. 102(1), 80–85 (2007).
[Crossref]

Yetisen, A. K.

A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 2210–2251 (2013).
[Crossref] [PubMed]

Ylä-Herttuala, S.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Yoon, S.

Zhang, H.-W.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Zhang, L.

R. Zhang, G. Han, L. Zhang, and B. Yang, “Gel combustion synthesis and luminescence properties of nanoparticles of monoclinic SrAl2O4: Eu2+, Dy3+,” Mater. Chem. Phys. 113(1), 255–259 (2009).
[Crossref]

Zhang, P.

P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
[Crossref]

Zhang, R.

R. Zhang, G. Han, L. Zhang, and B. Yang, “Gel combustion synthesis and luminescence properties of nanoparticles of monoclinic SrAl2O4: Eu2+, Dy3+,” Mater. Chem. Phys. 113(1), 255–259 (2009).
[Crossref]

Zhang, S.

S. Wu, S. Zhang, and J. Yang, “Influence of microwave process on photoluminescence of europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process,” Mater. Chem. Phys. 102(1), 80–85 (2007).
[Crossref]

Zheng, Z.

P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. K. Kandpal, B. Goundie, J. Wright, R. A. Pollock, M. D. Mason, and R. W. Meulenberg, “Investigation of the emission mechanism in milled SrAl2O4:Eu, Dy using optical and synchrotron X-ray spectroscopy,” ACS Appl. Mater. Interfaces 3(9), 3482–3486 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem. 393(2), 569–582 (2009).
[Crossref] [PubMed]

Anal. Chem. (1)

A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. V. Hagström, K. Kourentzi, T. R. Lee, and R. C. Willson, “Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays,” Anal. Chem. 86(19), 9481–9488 (2014).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

Appl. Phys. Lett. (1)

W. Chen, Z. Wang, Z. Lin, and L. Lin, “Thermoluminescence of ZnS nanoparticles,” Appl. Phys. Lett. 70(11), 1465–1467 (1997).
[Crossref]

Bioconjug. Chem. (1)

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Ceram. Int. (1)

W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int. 41(10), 15034–15040 (2015).
[Crossref]

Chem. Commun. (Camb.) (1)

B. B. Srivastava, A. Kuang, and Y. Mao, “Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route,” Chem. Commun. (Camb.) 51(34), 7372–7375 (2015).
[Crossref] [PubMed]

Chem. Mater. (3)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Héry, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Chem. Rev. (1)

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

R. May and Y. Li, “The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry,” Colloids Surf. A Physicochem. Eng. Asp. 418, 84–91 (2013).
[Crossref]

CrystEngComm (1)

D. Si, B. Geng, and S. Wang, “One-step synthesis and morphology evolution of luminescent Eu2+ doped strontium aluminate nanostructures,” CrystEngComm 12(10), 2722–2727 (2010).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Curr. Opin. Colloid Interface Sci. 9(3-4), 264–278 (2004).
[Crossref]

Displays (1)

H. Song, D. Chen, W. Tang, and Y. Peng, “Synthesis of SrAl2O4: Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties,” Displays 29(1), 41–44 (2008).
[Crossref]

Ind. Eng. Chem. Res. (1)

S. A. Morrison, C. L. Cahill, E. E. Carpenter, and V. G. Harris, “Production scaleup of reverse micelle synthesis,” Ind. Eng. Chem. Res. 45(3), 1217–1220 (2006).
[Crossref]

Int. J. Self-Propag. High-Temp. Synth. (1)

H. Tanaka, A. V. Gubarevich, H. Wada, and O. Odawara, “Process stages during solution combustion synthesis of strontium aluminates,” Int. J. Self-Propag. High-Temp. Synth. 22(3), 151–156 (2013).
[Crossref]

J. Alloys Compd. (2)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloys Compd. 341(1-2), 76–78 (2002).
[Crossref]

N. Thompson, P. Murugaraj, C. Rix, and D. E. Mainwaring, “Role of oxidative pre-calcination in extending blue emission of Sr4Al14O25 nanophosphors formed with microemulsions,” J. Alloys Compd. 537, 147–153 (2012).
[Crossref]

J. Am. Ceram. Soc. (1)

C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, and C.-N. Xu, “One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate,” J. Am. Ceram. Soc. 90(7), 2273–2275 (2007).
[Crossref]

J. Appl. Cryst. (2)

B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
[Crossref]

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Cryst. 44(6), 1272–1276 (2011).
[Crossref]

J. Electrochem. Soc. (6)

W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, “Novel structural behavior of strontium aluminate doped with europium,” J. Electrochem. Soc. 151(5), H97–H100 (2004).
[Crossref]

Y. Imai, R. Momoda, Y. Adachi, K. Nishikubo, Y. Kaida, H. Yamada, and C.-N. Xu, “Water-resistant surface-coating on europium-doped strontium aluminate nanoparticles,” J. Electrochem. Soc. 154(3), J77–J80 (2007).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

R. Chen, “Glow Curves with General Order Kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O 4 : Eu2 +, Dy3 +,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2 + and Dy3 + codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

J. Eur. Ceram. Soc. (1)

R. Aroz, V. Lennikov, R. Cases, M. L. Sanjuán, G. F. de la Fuente, and E. Muñoz, “Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” J. Eur. Ceram. Soc. 32(16), 4363–4369 (2012).
[Crossref]

J. Lumin. (1)

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, A. Serrano, and J. F. Fernandez, “Designing nanostructured strontium aluminate particles with high luminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1268–1276 (2015).
[Crossref]

J. Mater. Res. (1)

I.-C. Chen and T.-M. Chen, “Effect of host compositions on the afterglow properties of phosphorescent strontium aluminate phosphors derived from the sol-gel method,” J. Mater. Res. 16(05), 1293–1300 (2001).
[Crossref]

J. Mater. Sci. Eng. B (1)

C.-H. Lu, S.-Y. Chen, and C.-H. Hsu, “Nanosized strontium aluminate phosphors prepared via a reverse microemulsion route,” J. Mater. Sci. Eng. B 140(3), 218–221 (2007).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

I. P. Sahu, D. P. Bisen, N. Brahme, R. K. Tamrakar, and R. Shrivastava, “Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route,” J. Mater. Sci. Mater. Electron. 26(11), 8824–8839 (2015).
[Crossref]

J. Phys. Chem. B (1)

S. Sharma and A. K. Ganguli, “Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures,” J. Phys. Chem. B 118(15), 4122–4131 (2014).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

P. Zhang, M. Xu, Z. Zheng, L. Liu, and L. Li, “Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique,” J. Sol-Gel Sci. Technol. 43(1), 59–64 (2007).
[Crossref]

Lab Chip (1)

A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 2210–2251 (2013).
[Crossref] [PubMed]

Langmuir (1)

R. Ranjan, S. Vaidya, P. Thaplyal, M. Qamar, J. Ahmed, and A. K. Ganguli, “Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate,” Langmuir 25(11), 6469–6475 (2009).
[Crossref] [PubMed]

lnorg. Inorg. Chem. (1)

R. E. Rojas-Hernandez, F. Rubio-Marcos, R. H. Gonçalves, M. Á. Rodriguez, E. Véron, M. Allix, C. Bessada, and J. F. Fernandez, “Original synthetic route to obtain a SrAl2O4 phosphor by the molten salt method: Insights into the reaction mechanism and enhancement of the persistent luminescence,” lnorg. Inorg. Chem. 54(20), 9896–9907 (2015).
[Crossref] [PubMed]

Mater. Chem. Phys. (2)

R. Zhang, G. Han, L. Zhang, and B. Yang, “Gel combustion synthesis and luminescence properties of nanoparticles of monoclinic SrAl2O4: Eu2+, Dy3+,” Mater. Chem. Phys. 113(1), 255–259 (2009).
[Crossref]

S. Wu, S. Zhang, and J. Yang, “Influence of microwave process on photoluminescence of europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process,” Mater. Chem. Phys. 102(1), 80–85 (2007).
[Crossref]

Nanoscale (1)

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general nonaqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (2)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu2+,Dy3+ persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

RSC Advances (1)

R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, “A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates,” RSC Advances 5(53), 42559–42567 (2015).
[Crossref]

Theranostics (1)

T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, and C. Richard, “Chemically engineered persistent luminescence nanoprobes for bioimaging,” Theranostics 6(13), 2488–2523 (2016).
[Crossref] [PubMed]

Z. Anorg. Allg. Chem. (1)

A. R. Schulze and H. M. Buschbaum, “Zur Verbindungsbildung von MeO: M2O3. IV. Zur Struktur von monoklinem SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

Other (8)

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985).

W. Pannhorst and J. L. Ö. Hn, “Zur Kristallstruktur von Strontianit, SrCO3,” in Zeitschrift für Kristallographie - Crystalline Materials, (1970), p. 455.

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, 1997).

N. Thompson, “An approach to the synthesis of strontium aluminate based nanophosphors,” (RMIT University, 2012).

G. T. Hermanson, “Chapter 14 - Microparticles and Nanoparticles,” in Bioconjugate Techniques (Second Edition) (Academic Press, 2008).

T. Riuttamäki, “Upconverting phosphor technology: exceptional photoluminescent properties light up homogeneous bioanalytical assays,” (Annales Universitatis Turkuensis, Tuku, 2011).

L. Qi, “Synthesis of inorganic nanostructures in reverse micelles,” in Encyclopedia of Surface and Colloid Science, 2nd ed., P. Somasundaran, ed. (Taylor & Francis, 2006).

A. C. V. D. Larson, R.B., “General Structure Analysis System (GSAS),” (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Powder X-ray diffraction patterns of microwave-assisted reverse micelle SrAl2O4:Eu2+,Dy3+ showing batch-to-batch consistency of the microwave heating process. Black is the calculated pattern. [39] “+” is a minor Al2O3 impurity.

Fig. 2
Fig. 2

(a) Reverse micelle and (b) solid state synthesis Rietveld refinements show the reverse micelle is comparable to the traditional solid state synthesis. Black circles are for observed data, solid lines are the refined pattern, and “+” is the Al2O3 impurity.

Fig. 3
Fig. 3

The two independent polyhedra (a) [Sr(1)O7] and (b) [Sr(2)O7] are shown to the left of the unit cell (c) of SrAl2O4 in the monoclinic space group P21 with the [AlO4] tetrahedra highlighted.

Fig. 4
Fig. 4

SEM with a 200 × magnification and the scale bar is 50 μm. (a) Reverse micelle synthesis visualizes the overall particle sizes are much smaller than the (b) solid state synthesis. Both starting materials were reacted using microwave-assisted heating.

Fig. 5
Fig. 5

Particle size analysis of the (a) reverse micelle synthesis showing that 50% of the equivalent sphere diameters (d0.5) are 4.2 μm or smaller and (b) the all solid state synthesis gives a d0.5 = 14.3 μm.

Fig. 6
Fig. 6

(a) Excitation and emission spectra of solid state (SS) and reverse micelle (RM) showing λem,max = 520 nm for both synthesis pathways. (b) CIE diagram illustrating the calculated color coordinates have nearly identical visible emission.

Fig. 7
Fig. 7

Temperature-dependent measurement of (a) RM and (b) SS emission spectra (top) and the relative integrated intensity of the quenching temperature (T50) of the combined emission peaks (bottom)

Fig. 8
Fig. 8

Temperature-dependent luminescent decay of the (a) reverse micelle and (b) solid state observed for 3600 seconds. The data fit to a tri-exponential (c) reverse micelle and (d) solid state show the reverse micelle has a longer lifetime then the all solid state sample.

Fig. 9
Fig. 9

(a) TL emission curve cumulative fit of solid state (black) and reverse micelle (red), grey is the observed data. Peaks determined by deconvolution for (b) reverse micelle and (c) solid state. Peaks with traps < 0.4 eV or > 1 eV are dashed lines and peaks between 0.4 eV and 1 eV are solid lines.

Fig. 10
Fig. 10

Powder X-ray diffraction of precursor material from reverse micelle synthesis. Black is the observed data and blue is the calculated pattern from ICSD [58]

Fig. 11
Fig. 11

(a) Reverse micelle and (b) solid state synthesis performed by high temperature furnace heating of Rietveld refinements. Show the reverse micelle is again comparable to the solid state sample. Black circles are for observed data, solid lines are the refined pattern. And “+” is the Al2O3 impurity. An additional unidentified impurity.

Fig. 12
Fig. 12

Particle size analysis of samples prepared via high temperature furnace heating (a) reverse micelle synthesis and (b) solid state synthesis have comparable particle sizes.

Tables (6)

Tables Icon

Table 1 ICP-OES of reverse micelle precursors establishing the amount of excess Sr(NO3)2 required to produce the desired stoichiometric ratios of Sr:Al.

Tables Icon

Table 2 Rietveld refinement results for reverse micelle and solid state synthesis of SrAl2O4:Eu2+,Dy3+ using powder X-ray diffraction.

Tables Icon

Table 3 Crystallographic results as determined by Rietveld refinement of powder X-ray diffraction

Tables Icon

Table 4 Calculated trap depths of reverse micelle and solid state synthesis from deconvolution of TL emission spectra.

Tables Icon

Table 5 Rietveld refinement results for reverse micelle and solid state synthesis of SrAl2O4:Eu2+,Dy3+ using powder X-ray diffraction of synthesis performed using a high temperature furnace

Tables Icon

Table 6 Crystallographic results as determined by Rietveld refinement of powder X-ray diffraction. The samples were reacted using a high temperature furnace.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Sr(NO 3 ) 2(aq) + ( NH 4 ) 2 CO 3(aq) SrCO 3(s) + 2NH 4 + + 2NO 3
Al(NO 3 ) 2(aq) + 3NH 4 OH (aq) Al(OH) 3(s) + 3NH 4 + + 3NO 3
I= A 1 e ( t τ 1 ) + A 2 e ( t τ 2 ) + A 3 e ( t τ 3 )
E A =[2.52+10.2( μ g 0.42)]( k B T m 2 ω )(2 k B T m )
μ g = σ ω

Metrics