Abstract

Two novel photoresists were developed for the fabrication of sub-diffractionally sized polymeric nanostructures with chemically reactive surfaces. Using multiphoton polymerization as well as stimulated emission depletion (STED) lithography, chemically functional monomers were copolymerized with highly crosslinking triacrylate monomers to yield stable nanostructures. The polymer structure was thereby supplemented with chemical functionalities for further covalent modification reactions. The reactivity of mercapto- and carboxylate groups on the surface of the nanostructures was proved by orthogonally labeling them with reactive fluorophores. The photoresists can be used for stimulated emission depletion lithography and lateral line widths down to 55 nm were achieved. A three-dimensional structure is shown that is made up with three compounds: a frame out of a un-functionalized acrylate photoresist, and two intermediate networks made up with thiol- and carboxyl functional photoresists.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
120 nm resolution and 55 nm structure size in STED-lithography

Richard Wollhofen, Julia Katzmann, Calin Hrelescu, Jaroslaw Jacak, and Thomas A. Klar
Opt. Express 21(9) 10831-10840 (2013)

Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy

Marjukka Elmeranta, Giuseppe Vicidomini, Martí Duocastella, Alberto Diaspro, and Gustavo de Miguel
Opt. Mater. Express 6(10) 3169-3179 (2016)

3D direct laser writing using a 405  nm diode laser

Patrick Mueller, Michael Thiel, and Martin Wegener
Opt. Lett. 39(24) 6847-6850 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
    [Crossref] [PubMed]
  2. C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
    [Crossref] [PubMed]
  3. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [Crossref]
  4. J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
    [Crossref] [PubMed]
  5. M. A. Skylar-Scott, S. Gunasekaran, and J. A. Lewis, “Laser-assisted direct ink writing of planar and 3D metal architectures,” Proc. Natl. Acad. Sci. U.S.A. 113(22), 6137–6142 (2016).
    [Crossref] [PubMed]
  6. V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
    [Crossref] [PubMed]
  7. F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
    [Crossref] [PubMed]
  8. J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
    [Crossref] [PubMed]
  9. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [Crossref] [PubMed]
  10. J. Stampfl, R. Liska, and A. Ovsianikov, eds., Multiphoton lithography. Techniques, Materials and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2017).
  11. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref] [PubMed]
  12. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
    [Crossref] [PubMed]
  13. L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
    [Crossref]
  14. M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
    [Crossref]
  15. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  16. K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
    [Crossref]
  17. Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
    [Crossref]
  18. M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
    [Crossref] [PubMed]
  19. J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
    [Crossref]
  20. A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14(4), 393–403 (1980).
    [Crossref] [PubMed]
  21. J. M. Kim and H. Muramatsu, “Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy,” Nano Lett. 5(2), 309–314 (2005).
    [Crossref] [PubMed]
  22. A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices 9(6), 613–633 (2012).
    [Crossref] [PubMed]
  23. S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
    [Crossref] [PubMed]
  24. A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
    [Crossref] [PubMed]
  25. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
    [Crossref] [PubMed]
  26. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
    [Crossref] [PubMed]
  27. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1(4), 614–624 (2011).
    [Crossref]
  28. T. J. A. Wolf, J. Fischer, M. Wegener, and A.-N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett. 36(16), 3188–3190 (2011).
    [Crossref] [PubMed]
  29. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
    [Crossref] [PubMed]
  30. M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
    [Crossref] [PubMed]
  31. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [Crossref] [PubMed]
  32. P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
    [Crossref] [PubMed]
  33. J. Fischer and M. Wegener, “Three‐dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  34. R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
    [Crossref] [PubMed]
  35. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
    [Crossref]
  36. A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
    [Crossref] [PubMed]
  37. T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
    [Crossref] [PubMed]
  38. B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
    [Crossref] [PubMed]
  39. M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
    [Crossref]
  40. B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
    [Crossref] [PubMed]
  41. H. Ceylan, I. C. Yasa, and M. Sitti, “3D Chemical Patterning of Micromaterials for Encoded Functionality,” Adv. Mater. 29(9), 1605072 (2017).
    [Crossref] [PubMed]
  42. A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
    [Crossref]
  43. A. Ostendorf and K. König, eds., Optically Induced Nanostructures, Biomedical and Technical Applications (De Gruyter, 2015).
  44. J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
    [Crossref] [PubMed]
  45. B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
    [Crossref] [PubMed]
  46. T. A. Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. 2014, 14049 (2014).
    [Crossref]
  47. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
    [Crossref]
  48. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
    [Crossref] [PubMed]
  49. J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
    [Crossref] [PubMed]
  50. C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
    [Crossref] [PubMed]

2017 (3)

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

H. Ceylan, I. C. Yasa, and M. Sitti, “3D Chemical Patterning of Micromaterials for Encoded Functionality,” Adv. Mater. 29(9), 1605072 (2017).
[Crossref] [PubMed]

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

2016 (5)

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref] [PubMed]

M. A. Skylar-Scott, S. Gunasekaran, and J. A. Lewis, “Laser-assisted direct ink writing of planar and 3D metal architectures,” Proc. Natl. Acad. Sci. U.S.A. 113(22), 6137–6142 (2016).
[Crossref] [PubMed]

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

2015 (4)

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

2014 (3)

T. A. Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. 2014, 14049 (2014).
[Crossref]

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

2013 (6)

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three‐dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

2012 (6)

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices 9(6), 613–633 (2012).
[Crossref] [PubMed]

S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
[Crossref] [PubMed]

A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
[Crossref]

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

2011 (7)

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1(4), 614–624 (2011).
[Crossref]

T. J. A. Wolf, J. Fischer, M. Wegener, and A.-N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett. 36(16), 3188–3190 (2011).
[Crossref] [PubMed]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

2010 (3)

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

2008 (1)

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

2007 (3)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[Crossref] [PubMed]

2006 (1)

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

2005 (2)

J. M. Kim and H. Muramatsu, “Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy,” Nano Lett. 5(2), 309–314 (2005).
[Crossref] [PubMed]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

1999 (1)

1997 (1)

1980 (1)

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14(4), 393–403 (1980).
[Crossref] [PubMed]

Autenrieth, T. J.

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Bae, H.

S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
[Crossref] [PubMed]

Balciunas, E.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Baldacchini, T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Baltriukiene, D.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Barlow, S.

Barner-Kowollik, C.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

Bastmeyer, M.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

Baszkin, A.

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14(4), 393–403 (1980).
[Crossref] [PubMed]

Baudis, S.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Baumgartner, W.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Bayindir, Z.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Bertels, S.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

Buchegger, B.

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
[Crossref] [PubMed]

Bukelskiene, V.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Butkevicius, A.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Butkus, S.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Ceylan, H.

H. Ceylan, I. C. Yasa, and M. Sitti, “3D Chemical Patterning of Micromaterials for Encoded Functionality,” Adv. Mater. 29(9), 1605072 (2017).
[Crossref] [PubMed]

Chan, B. P.

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

Chang, W. S.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Chen, V. W.

Chichkov, B.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Chichkov, B. N.

Cicha, K.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

Claeyssens, F.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Claus, T. K.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

Culver, J. C.

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Delaittre, G.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

Dickinson, M. E.

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

Dokmeci, M.

S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
[Crossref] [PubMed]

Dong, W.

Du, Y.

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

Emons, M.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Ergin, T.

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Farsari, M.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

Fichtner, D.

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

Fischer, J.

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three‐dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1(4), 614–624 (2011).
[Crossref]

T. J. A. Wolf, J. Fischer, M. Wegener, and A.-N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett. 36(16), 3188–3190 (2011).
[Crossref] [PubMed]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Fotakis, C.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Fourkas, J. T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Frank, S. C.

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Franz, C. M.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

Frenner, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Freudenthaler, P.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref] [PubMed]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Gill, A. A.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Gittard, S. D.

Greiner, A. M.

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Gunasekaran, S.

M. A. Skylar-Scott, S. Gunasekaran, and J. A. Lewis, “Laser-assisted direct ink writing of planar and 3D metal architectures,” Proc. Natl. Acad. Sci. U.S.A. 113(22), 6137–6142 (2016).
[Crossref] [PubMed]

Hahn, V.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

Hales, J. M.

Han, J. T.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Haske, W.

Haycock, J. W.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Heitz, J.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Hell, S. W.

Heller, C.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Hoffmann, J. C.

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

Hrelescu, C.

Huang, N.

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

Jacak, J.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
[Crossref] [PubMed]

T. A. Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. 2014, 14049 (2014).
[Crossref]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

Jantsch, V.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

Juodkazis, S.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Kaschke, J.

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

Katzmann, J.

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

Kayser, S.

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

Khademhosseini, A.

S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
[Crossref] [PubMed]

Kim, D.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Kim, J. H.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Kim, J. M.

J. M. Kim and H. Muramatsu, “Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy,” Nano Lett. 5(2), 309–314 (2005).
[Crossref] [PubMed]

Kim, J. T.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Klar, T. A.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
[Crossref] [PubMed]

T. A. Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. 2014, 14049 (2014).
[Crossref]

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[Crossref] [PubMed]

Klein, F.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

Kling, R.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Koroleva, A.

Köstner, D.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Kreutzer, J.

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

Kucevicius, P.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Lee, G.-W.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Lewis, J. A.

M. A. Skylar-Scott, S. Gunasekaran, and J. A. Lewis, “Laser-assisted direct ink writing of planar and 3D metal architectures,” Proc. Natl. Acad. Sci. U.S.A. 113(22), 6137–6142 (2016).
[Crossref] [PubMed]

Li, L.

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Li, Z.

A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
[Crossref]

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

Liska, R.

A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices 9(6), 613–633 (2012).
[Crossref] [PubMed]

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
[Crossref]

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Lukoševicius, L.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Lyman, D. J.

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14(4), 393–403 (1980).
[Crossref] [PubMed]

Machacek, T.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

Magnus, B.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Malinauskas, M.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Marder, S. R.

Marichy, C.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref] [PubMed]

Marksteiner, R.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Markut-Kohl, R.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

Maruo, S.

Melissinaki, V.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Mironov, V.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices 9(6), 613–633 (2012).
[Crossref] [PubMed]

Morgner, U.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Mueller, P.

Muller, N.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref] [PubMed]

Muramatsu, H.

J. M. Kim and H. Muramatsu, “Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy,” Nano Lett. 5(2), 309–314 (2005).
[Crossref] [PubMed]

Nakamura, O.

Narayan, R. J.

Naughton, M. J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Neumeister, A.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Ngan, A. H. W.

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

Nguyen, A.

Obata, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

Oh, J.

S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
[Crossref] [PubMed]

Ortega, I.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Osten, W.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Ostendorf, A.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Ovsianikov, A.

A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices 9(6), 613–633 (2012).
[Crossref] [PubMed]

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
[Crossref]

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Pauloehrl, T.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

Paz, V. F.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Peciukaityte, M.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Perry, J. W.

Peterhänsel, S.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Plamadeala, C.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Plochberger, B.

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

Poché, R. A.

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

Praino, J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Pucher, N.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

Qin, X.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

Quick, A. S.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Ranella, A.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Reinhardt, C.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Rekštyte, S.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Richter, B.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

Rutkunas, V.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Saleh, B. E. A.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Sanvitto, D.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Scheffold, F.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref] [PubMed]

Scheiwe, A. C.

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Schilcher, K.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

Schubert, U.

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

Schütz, G. J.

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

Selimovic, S.

S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
[Crossref] [PubMed]

Seol, S. K.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Sitti, M.

H. Ceylan, I. C. Yasa, and M. Sitti, “3D Chemical Patterning of Micromaterials for Encoded Functionality,” Adv. Mater. 29(9), 1605072 (2017).
[Crossref] [PubMed]

Sivun, D.

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

Skylar-Scott, M. A.

M. A. Skylar-Scott, S. Gunasekaran, and J. A. Lewis, “Laser-assisted direct ink writing of planar and 3D metal architectures,” Proc. Natl. Acad. Sci. U.S.A. 113(22), 6137–6142 (2016).
[Crossref] [PubMed]

Slater, J. H.

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

Spitzbart, M.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Stadlmann, K.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

Stampf, J.

A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices 9(6), 613–633 (2012).
[Crossref] [PubMed]

Stampfl, J.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
[Crossref]

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Stewart, J.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Striebel, T.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sun, Y.

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Teich, M. C.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

Thiel, M.

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Tong, M. H.

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

Torgersen, J.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
[Crossref]

Trouillet, V.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Unterreiner, A.-N.

Vamvakaki, M.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

Vasic, B.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

von Freymann, G.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Wedlich, D.

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

Wegener, M.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three‐dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

T. J. A. Wolf, J. Fischer, M. Wegener, and A.-N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett. 36(16), 3188–3190 (2011).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1(4), 614–624 (2011).
[Crossref]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Welle, A.

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

West, J. L.

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

Weth, A.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

Wiesbauer, M.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

Wolf, T. J. A.

Wolfesberger, C.

C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
[Crossref] [PubMed]

Wollhofen, R.

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
[Crossref] [PubMed]

T. A. Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. 2014, 14049 (2014).
[Crossref]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

Yang, J. R.

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

Yasa, I. C.

H. Ceylan, I. C. Yasa, and M. Sitti, “3D Chemical Patterning of Micromaterials for Encoded Functionality,” Adv. Mater. 29(9), 1605072 (2017).
[Crossref] [PubMed]

Zhang, W.

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

Zhou, Z. L.

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

ACS Nano (1)

B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, and T. A. Klar, “Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers,” ACS Nano 10(2), 1954–1959 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska, “Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,” Adv. Funct. Mater. 22(16), 3429–3433 (2012).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Adv. Mater. (6)

J. H. Kim, W. S. Chang, D. Kim, J. R. Yang, J. T. Han, G.-W. Lee, J. T. Kim, and S. K. Seol, “3D printing of reduced graphene oxide nanowires,” Adv. Mater. 27(1), 157–161 (2015).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref] [PubMed]

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins,” Adv. Mater. 29(5), 1604342 (2017).
[Crossref] [PubMed]

H. Ceylan, I. C. Yasa, and M. Sitti, “3D Chemical Patterning of Micromaterials for Encoded Functionality,” Adv. Mater. 29(9), 1605072 (2017).
[Crossref] [PubMed]

B. Richter, T. Pauloehrl, J. Kaschke, D. Fichtner, J. Fischer, A. M. Greiner, D. Wedlich, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry,” Adv. Mater. 25(42), 6117–6122 (2013).
[Crossref] [PubMed]

J. C. Culver, J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson, “Three-dimensional biomimetic patterning in hydrogels to guide cellular organization,” Adv. Mater. 24(17), 2344–2348 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

T. K. Claus, B. Richter, V. Hahn, A. Welle, S. Kayser, M. Wegener, M. Bastmeyer, G. Delaittre, and C. Barner-Kowollik, “Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation,” Angew. Chem. Int. Ed. Engl. 55(11), 3817–3822 (2016).
[Crossref] [PubMed]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh, and M. C. Teich, “Polymer microcantilevers fabricated via multiphoton absorption polymerization,” Appl. Phys. Lett. 86(6), 064105 (2005).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Biofabrication (1)

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Biomaterials (1)

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Expert Rev. Med. Devices (1)

A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices 9(6), 613–633 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 64911 (2011).
[Crossref]

J. Biomed. Mater. Res. (1)

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14(4), 393–403 (1980).
[Crossref] [PubMed]

J. Biomed. Mater. Res. A (1)

J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner, and R. Marksteiner, “Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization,” J. Biomed. Mater. Res. A 105(3), 891–899 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17(10), 105008 (2012).
[Crossref] [PubMed]

J. Laser Appl. (1)

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

J. Micromech. Microeng. (1)

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18(12), 125014 (2008).
[Crossref]

J. Nanobiotechnology (1)

C. Wolfesberger, R. Wollhofen, B. Buchegger, J. Jacak, and T. A. Klar, “Streptavidin functionalized polymer nanodots fabricated by visible light lithography,” J. Nanobiotechnology 13(1), 27 (2015).
[Crossref] [PubMed]

J. Opt. (1)

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three‐dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Macromol. Rapid Commun. (1)

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Mater. Today (1)

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

Micromachines (Basel) (1)

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Nano Lett. (2)

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

J. M. Kim and H. Muramatsu, “Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy,” Nano Lett. 5(2), 309–314 (2005).
[Crossref] [PubMed]

Nat. Commun. (2)

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Scr. (1)

T. A. Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. 2014, 14049 (2014).
[Crossref]

Polymers (Basel) (1)

S. Selimović, J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini, “Microscale Strategies for Generating Cell-Encapsulating Hydrogels,” Polymers (Basel) 4(3), 1554–1579 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. A. Skylar-Scott, S. Gunasekaran, and J. A. Lewis, “Laser-assisted direct ink writing of planar and 3D metal architectures,” Proc. Natl. Acad. Sci. U.S.A. 113(22), 6137–6142 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref] [PubMed]

M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6(1), 20063 (2016).
[Crossref] [PubMed]

Other (2)

J. Stampfl, R. Liska, and A. Ovsianikov, eds., Multiphoton lithography. Techniques, Materials and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2017).

A. Ostendorf and K. König, eds., Optically Induced Nanostructures, Biomedical and Technical Applications (De Gruyter, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Chemical structures of the acrylate monomers and the photoinitiators.

Fig. 2
Fig. 2

Testing the CEA/PETA photoresist. (a) SEM images of lines with thickened ends for improved attachment, written with 3.2 mW excitation power and different depletion powers (increasing from left to right from 0 mW to 30 mW in 2mW steps). A 2D donut was used for the STED PSF. (b) Zoom in on the line written without STED and (c) with 12 mW STED power (c.f. white dashed boxes in (a)). (d) Evaluation of line widths as a function of the applied STED power.

Fig. 3
Fig. 3

Testing the MPOEA/PETA photoresist. (a) SEM images of lines with thickened ends for improved attachment, written with 3.0 mW excitation power and different depletion powers (increasing from left to right from 0 mW to 7.5 mW in 0.5 mW steps). A 2D donut was used for the STED PSF. (b) Zoom in on the line written without STED and (c) with 5 mW STED power (c.f. white dashed boxes in (a)). (d) Evaluation of line widths as a function of the applied STED power.

Fig. 4
Fig. 4

Orthogonally functionalized PETA grids. (a-c) Prepared with MPP, (d-f) prepared with STED lithography. (a, d) Red channel of the fluorescence microscope (excitation with (a) 642 nm and (d) 660 nm): Cy5-maleimide selectively binds to mercapto-groups of MPOEA/PETA grids. (b) 488 nm excitation channel of the fluorescence microscope: CF-488A-amine binds preferentially to carboxy-groups of the MPP structured CEA/PETA grid. (e) 532 nm excitation channel of the fluorescence microscope: Cyanine3-amine binds preferentially to carboxy-groups of the STED structured CEA/PETA grid. (c) and (f): Overlays of (a, b) or (d, e), respectively. The insets show zoom-ins on the white dashed boxes. The linear color scales are shown in the insets of (a, b, d, e). (g) SEM image of the grids shown in (f), after metallization with 12 nm platinum. The inset shows line widths of 55 nm for the MPOEA/PETA grid and 61 nm for the CEA/PETA grid.

Fig. 5
Fig. 5

(a) SEM image of a triple component structure, recorded at 60° sample tilt. A scaffold of a 4 × 4 grid of pillars and a cover grid (top) are written with MPP in non-functional PETA photoresist. Using STED lithography, four CEA/PETA grids (shaded green) were written into the scaffold, followed by four MPOEA/PETA grids (shaded red). The top-most MPOEA/PETA grid is merged with the cover grid and therefore not visible. The structure is constricted due to shrinkage of polymers during development. The yellow dashed line indicates the plane of confocal scanning, prior to metallization with 12 nm platinum and SEM imaging. (b) Confocal fluorescence images of the 3D triple compound structure immersed in glycerol. Cy5-maleimide binds preferentially to MPOEA/PETA layers (red), whereas Cyanine3-amine binds to CEA/PETA layers (green). A minimum axial distance between MPOEA/PETA and CEA/PETA layers of 550 nm axially is measured in the confocal images. Cy5-maleimide and Cyanine3-amine were excited with 660 and 532 nm, respectively.

Fig. 6
Fig. 6

(a) Scheme of the MPP/STED lithography setup. Red depicts the excitation beam for MPP (780 nm, 100 fs pulse duration) and green depicts the optional depletion beam (532 nm continuous wave CW). The depletion beam is shaped into a donut using a 2π spiral phase plate (PP) or into a 3D STED beam using an annular phase plate retarding the center by π. Abbreviations: acousto-optic modulator (AOM), pinhole (PH), quarter wave plate (λ/4), dichroic mirror (DM), avalanche photo diode (APD). (b) Excitation beam PSF and (c) donut-shaped 2D STED beam PSF, measured by scattering of 50 nm gold nanoparticles. (d) Emission and absorption spectrum of 7-diethylamino-3-thenoylcoumarin (DETC, photoinitiator) in pentaerythritol triacrylate (PETA).

Fig. 7
Fig. 7

SEM image of lines with thickened ends (10% additional excitation power), written with 2.9 mW excitation power and depletion powers ranging from 0 mW to 25 mW. Lines were written with the MPOEA/PETA resist, using a 2D donut shaped STED beam. Minimum line widths are observed at 5 mW depletion power. Due to anti-Stokes or multiphoton absorption of depletion light, substantial broadening of the lines is observed for higher depletion powers.

Fig. 8
Fig. 8

(a) Confocal reflection image (532 nm) of patches and composite grids written with MPP using the functional MPOEA/PETA and a non-functional PETA resist. The upper two patches on the left and the upper most left grid consists of PETA with IRGACURE® 819, the lower patch as well as the middle and lower right grid are written with MPOEA/PETA with IRGACURE 819. (b) Fluorescence image (excitation with 660 nm) of the structures after incubation with Cy5-maleimide. The fluorescence signal emanates selectively from the MPOEA/PETA structures. Linear color scales shown in insets.

Fig. 9
Fig. 9

Reaction scheme for the synthesis of MPOEA.

Fig. 10
Fig. 10

1H-NMR spectrum of trtSPrAc (DMSO-d6, 300 MHz).

Fig. 11
Fig. 11

13C-NMR spectrum of trtSPrAc (DMSO-d6, 75.43 MHz).

Fig. 12
Fig. 12

ATR-IR spectrum of trtSPrAc.

Fig. 13
Fig. 13

HR-ESIMS spectrum of trtSPrAc (MeOH).

Fig. 14
Fig. 14

1H-NMR spectrum of trtSPrOAcr (CDCl3, 300 MHz).

Fig. 15
Fig. 15

13C-NMR spectrum of trtSPrOAcr (CDCl3, 75.43 MHz).

Fig. 16
Fig. 16

ATR-IR spectrum of trtSPrOAcr:

Fig. 17
Fig. 17

HR-ESIMS spectrum of trtSPrOAcr (MeOH).

Fig. 18
Fig. 18

1H-NMR spectrum of MPOEA (CDCl3, 300 MHz). Residual solvent peaks stem from ethylacetate.

Fig. 19
Fig. 19

13C-NMR spectrum of MPOEA (CDCl3, 75.43 MHz). Residual solvent peaks stem from ethylacetate.

Fig. 20
Fig. 20

ATR-IR spectrum of MPOEA.

Fig. 21
Fig. 21

HR-ESIMS spectrum of MPOEA (MeOH).

Fig. 22
Fig. 22

Magnified side view of Fig. 5(a). The rung-cross-sections are indicated by dashed ellipses. The rungs exhibit an aspect ratio of ~1.8.

Metrics