Abstract

The ongoing revolution in optoelectronics based on graphene and graphene oxide (GO) demands the comprehension of reduction mechanisms. One of the most feasible reduction methods for GO is photo-reduction, which has been widely used and investigated. Here, from the perspective on the fluorescence evolution process of photo-reduced GO, we have studied the mechanisms of visible/ultraviolet (UV) photo-reduced GO in detail by steady-state photoluminescence spectroscopy and femtosecond transient absorption spectroscopy. It demonstrates that the oxygen-containing functional groups (OFGs) in sp3 domains of GO are initially reduced by visible light, while the OFGs in the boundary between neighboring sp2- and sp3-hybridized domains of GO prefer to be reduced by UV light. Raman spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy further prove the partial elimination of OFGs and the reconstruction of the C = C bonds, despite the GO reduced by visible light or UV light. Our work provides insight into the mechanisms of visible/UV photo-reduced GO.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Indirect optical transitions in hybrid spheres with alternating layers of titania and graphene oxide nanosheets

Shanshan Bao, Zheng Hua, Xiaoyong Wang, Yong Zhou, Chunfeng Zhang, Wenguang Tu, Zhigang Zou, and Min Xiao
Opt. Express 20(27) 28801-28807 (2012)

Optical constants of restored and etched reduced graphene oxide: a spectroscopic ellipsometry study

Yuhong Cao, Ertao Hu, Jie Xing, Li Liu, Tong Gu, Jiajin Zheng, Kehan Yu, and Wei Wei
Opt. Mater. Express 9(1) 234-243 (2019)

Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles

Mengmeng Yue, Jinhai Si, Lihe Yan, Yang Yu, and Xun Hou
Opt. Mater. Express 8(3) 698-703 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  3. Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
    [Crossref]
  4. Z. Pan, H. L. Gu, M. T. Wu, Y. X. Li, and Y. Chen, “Graphene-based functional materials for organic solar cells,” Opt. Mater. Express 2(6), 814–824 (2012).
    [Crossref]
  5. X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
    [Crossref]
  6. W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
    [Crossref]
  7. L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
    [Crossref]
  8. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
    [Crossref] [PubMed]
  9. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  10. Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
    [Crossref] [PubMed]
  11. J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
    [Crossref] [PubMed]
  12. H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
    [Crossref]
  13. Z. Y. Zhang, H. H. Tao, H. Li, G. Q. Ding, Z. H. Ni, and X. F. Chen, “Making few-layer graphene photoluminescent by UV ozonation,” Opt. Mater. Express 6(11), 3527–3540 (2016).
    [Crossref]
  14. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [Crossref]
  15. P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
    [Crossref] [PubMed]
  16. T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
    [Crossref]
  17. Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
    [Crossref]
  18. L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
    [Crossref]
  19. S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
    [Crossref] [PubMed]
  20. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
    [Crossref] [PubMed]
  21. L. Zhang, W. F. Dong, and H. B. Sun, “Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications,” Nanoscale 5(17), 7664–7684 (2013).
    [Crossref] [PubMed]
  22. D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
    [Crossref] [PubMed]
  23. L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
    [Crossref]
  24. D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
    [Crossref]
  25. C. Y. Lin, K. M. Hsu, H. C. Huang, T. F. Yeh, H. Y. Chang, C. H. Lien, H. Teng, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets,” Opt. Mater. Express 5(2), 218–226 (2015).
    [Crossref]
  26. M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
    [Crossref]
  27. V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
    [Crossref]
  28. Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
    [Crossref] [PubMed]
  29. L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
    [Crossref] [PubMed]
  30. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
    [Crossref] [PubMed]
  31. S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
    [Crossref] [PubMed]
  32. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
    [Crossref] [PubMed]
  33. S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
    [Crossref] [PubMed]
  34. D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
    [Crossref]
  35. H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
    [Crossref] [PubMed]
  36. L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
    [Crossref]
  37. Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
    [Crossref]
  38. N. Liaros, S. Couris, E. Koudoumas, and P. A. Loukakos, “Ultrafast processes in graphene oxide during femtosecond laser excitation,” J. Phys. Chem. C 120(7), 4104–4111 (2016).
    [Crossref]
  39. L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
    [Crossref]
  40. S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
    [Crossref]

2016 (7)

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Z. Y. Zhang, H. H. Tao, H. Li, G. Q. Ding, Z. H. Ni, and X. F. Chen, “Making few-layer graphene photoluminescent by UV ozonation,” Opt. Mater. Express 6(11), 3527–3540 (2016).
[Crossref]

T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
[Crossref]

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

N. Liaros, S. Couris, E. Koudoumas, and P. A. Loukakos, “Ultrafast processes in graphene oxide during femtosecond laser excitation,” J. Phys. Chem. C 120(7), 4104–4111 (2016).
[Crossref]

2015 (5)

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

C. Y. Lin, K. M. Hsu, H. C. Huang, T. F. Yeh, H. Y. Chang, C. H. Lien, H. Teng, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets,” Opt. Mater. Express 5(2), 218–226 (2015).
[Crossref]

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

2014 (5)

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
[Crossref] [PubMed]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

2013 (5)

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

L. Zhang, W. F. Dong, and H. B. Sun, “Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications,” Nanoscale 5(17), 7664–7684 (2013).
[Crossref] [PubMed]

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

2012 (5)

Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
[Crossref] [PubMed]

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Z. Pan, H. L. Gu, M. T. Wu, Y. X. Li, and Y. Chen, “Graphene-based functional materials for organic solar cells,” Opt. Mater. Express 2(6), 814–824 (2012).
[Crossref]

2011 (1)

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

2010 (6)

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

2009 (2)

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

2008 (2)

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Abdelsayed, V.

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Aluri, H. S.

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Ambrosi, A.

S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
[Crossref] [PubMed]

Ashraf, K. U.

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Aymonier, C.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

Bardhan, N. M.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Belcher, A. M.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chang, H. Y.

Chen, C. W.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, H. A.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Chen, I. S.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Chen, L.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Chen, L. C.

T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
[Crossref]

Chen, Q. D.

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
[Crossref] [PubMed]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Chen, S. J.

T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
[Crossref]

C. Y. Lin, K. M. Hsu, H. C. Huang, T. F. Yeh, H. Y. Chang, C. H. Lien, H. Teng, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets,” Opt. Mater. Express 5(2), 218–226 (2015).
[Crossref]

Chen, X. F.

Chen, Y.

Chen, Y. S.

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

Chhowalla, M.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Cichy, B.

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Cogdell, R. J.

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Collinson, M. M.

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Couris, S.

N. Liaros, S. Couris, E. Koudoumas, and P. A. Loukakos, “Ultrafast processes in graphene oxide during femtosecond laser excitation,” J. Phys. Chem. C 120(7), 4104–4111 (2016).
[Crossref]

Dai, H.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Das, R.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

Ding, G. Q.

Ding, H.

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

Dong, W. F.

L. Zhang, W. F. Dong, and H. B. Sun, “Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications,” Nanoscale 5(17), 7664–7684 (2013).
[Crossref] [PubMed]

Du, X. B.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Eda, G.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Elias, D. C.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

El-Shall, M. S.

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Feng, J.

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

Fu, X. Y.

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Giroire, B.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

Gluchowski, P.

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Goodwin, A.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Grossman, J. C.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Gu, H. L.

Guo, L.

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Han, B.

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Han, D.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

Han, D. D.

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

Han, W.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

Hao, Y. W.

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

Hassan, H. M.

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Hatakeyama, K.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

He, Y.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

He, Y. Y.

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Henry, L.

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

Hong, Z. R.

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

Hreniak, D.

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Hsu, K. M.

Huang, H. C.

Huang, J. C.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

Huang, K.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Ida, S.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

Jaszczak, J. A.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Ji, W. Y.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Jiang, F.

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Jiang, H. B.

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Jin, Z.

Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
[Crossref] [PubMed]

Jing, P. T.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Kaminska, I.

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Katsnelson, M. I.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Khezri, B.

S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
[Crossref] [PubMed]

Kim, E.

Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
[Crossref] [PubMed]

Kim, S. Y.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

Koinuma, M.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

Koudoumas, E.

N. Liaros, S. Couris, E. Koudoumas, and P. A. Loukakos, “Ultrafast processes in graphene oxide during femtosecond laser excitation,” J. Phys. Chem. C 120(7), 4104–4111 (2016).
[Crossref]

Kumar, P. V.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Li, D.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Li, D. B.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Li, H.

Li, Q.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Li, X. B.

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

Li, Y. X.

Liaros, N.

N. Liaros, S. Couris, E. Koudoumas, and P. A. Loukakos, “Ultrafast processes in graphene oxide during femtosecond laser excitation,” J. Phys. Chem. C 120(7), 4104–4111 (2016).
[Crossref]

Lien, C. H.

Lin, C. Y.

Lin, Y. Y.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Liu, L.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Liu, Y.

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

Liu, Y. Q.

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

Liu, Z.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Liu, Z. B.

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

Loukakos, P. A.

N. Liaros, S. Couris, E. Koudoumas, and P. A. Loukakos, “Ultrafast processes in graphene oxide during femtosecond laser excitation,” J. Phys. Chem. C 120(7), 4104–4111 (2016).
[Crossref]

Lu, D. X.

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

Lukaszewicz, M.

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Lv, W.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Mackowski, S.

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Marciniak, L.

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Marre, S.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

Matsumoto, Y.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

Mattevi, C.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Morozov, S. V.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Moussa, S.

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Ni, Z. H.

Niedziólka-Jönsson, J.

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Novoselov, K. S.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Pan, Z.

Penicaud, A.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Poulin, P.

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

Prabhakaran, P.

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

Pumera, M.

S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
[Crossref] [PubMed]

Qu, S. N.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Radosinski, L.

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Robinson, J. T.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Rotello, V. M.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Sasikala, S. P.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

Schedin, F.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Shao, R. Q.

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

Shao, Z. Z.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

Shen, D. Z.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Song, J. F.

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

Strek, W.

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Sun, H. B.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

L. Zhang, W. F. Dong, and H. B. Sun, “Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications,” Nanoscale 5(17), 7664–7684 (2013).
[Crossref] [PubMed]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
[Crossref] [PubMed]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Sun, S. H.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Sun, X.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Sun, X. J.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Sun, Y. Y.

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

Tan, S. M.

S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
[Crossref] [PubMed]

Taniguchi, T.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

Tao, H. H.

Tateishi, H.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

Teng, C. Y.

T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
[Crossref]

Teng, H.

T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
[Crossref]

C. Y. Lin, K. M. Hsu, H. C. Huang, T. F. Yeh, H. Y. Chang, C. H. Lien, H. Teng, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets,” Opt. Mater. Express 5(2), 218–226 (2015).
[Crossref]

Tian, J. G.

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

Tian, W. Q.

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

Tian, Y.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Tongay, S.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Twardowska, M.

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Wang, D.

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

Wang, H. Y.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

Wang, J.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Wang, J. N.

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

Wang, W. Q.

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

Wang, X. Y.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Wang, Y.

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

Wang, Y. F.

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

Watanabe, Y.

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

Webster, R. D.

S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
[Crossref] [PubMed]

Wei, S.

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Welsher, K.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Wiwatowski, K.

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Wu, J.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Wu, M. T.

Wu, Y. P.

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

Xia, H.

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Xiao, F. S.

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Xie, S. Y.

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

Xu, B. B.

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

Xu, H. L.

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

Yamaguchi, H.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Yan, X. Q.

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

Yang, B.

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

Yang, Y.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Yeh, T. F.

T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
[Crossref]

C. Y. Lin, K. M. Hsu, H. C. Huang, T. F. Yeh, H. Y. Chang, C. H. Lien, H. Teng, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets,” Opt. Mater. Express 5(2), 218–226 (2015).
[Crossref]

Yesilbag Tonga, G.

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

Zaric, S.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Zhang, J. H.

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

Zhang, L.

L. Zhang, W. F. Dong, and H. B. Sun, “Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications,” Nanoscale 5(17), 7664–7684 (2013).
[Crossref] [PubMed]

Zhang, R.

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

Zhang, S. B.

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

Zhang, T.

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Zhang, T. F.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Zhang, X. L.

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Zhang, Y. L.

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
[Crossref] [PubMed]

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Zhang, Z. Y.

Zhao, X.

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

Zhao, Y. R.

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

Zheng, Y. S.

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

Zhou, D.

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

Zhu, S. J.

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple photoreduction of graphene oxide nanosheet under mild conditions,” ACS Appl. Mater. Interfaces 2(12), 3461–3466 (2010).
[Crossref] [PubMed]

S. P. Sasikala, K. Huang, B. Giroire, P. Prabhakaran, L. Henry, A. Penicaud, P. Poulin, and C. Aymonier, “Simultaneous graphite exfoliation and N doping in supercritical ammonia,” ACS Appl. Mater. Interfaces 8(45), 30964–30971 (2016).
[Crossref] [PubMed]

ACS Nano (1)

S. P. Sasikala, L. Henry, G. Yesilbag Tonga, K. Huang, R. Das, B. Giroire, S. Marre, V. M. Rotello, A. Penicaud, P. Poulin, and C. Aymonier, “High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids,” ACS Nano 10(5), 5293–5303 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, and H. B. Sun, “Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers,” Adv. Funct. Mater. 25(28), 4548–4557 (2015).
[Crossref]

H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, and H. B. Sun, “Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference,” Adv. Funct. Mater. 24(29), 4595–4602 (2014).
[Crossref]

Adv. Mater. (5)

D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, and H. B. Sun, “Moisture-responsive graphene paper prepared by self-controlled photoreduction,” Adv. Mater. 27(2), 332–338 (2015).
[Crossref] [PubMed]

L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, and H. B. Sun, “Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy,” Adv. Mater. 25(45), 6539–6545 (2013).
[Crossref] [PubMed]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. 22(29), 3204–3207 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, and H. B. Sun, “Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy,” Adv. Opt. Mater. 1(3), 264–271 (2013).
[Crossref]

L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, and H. B. Sun, “Laser-mediated programmable N doping and simultaneous reduction of graphene oxides,” Adv. Opt. Mater. 2(2), 120–125 (2014).
[Crossref]

Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, “Photoreduction of graphene oxides: methods, properties, and applications,” Adv. Opt. Mater. 2(1), 10–28 (2014).
[Crossref]

Appl. Phys. Lett. (1)

M. Twardowska, I. Kamińska, K. Wiwatowski, K. U. Ashraf, R. J. Cogdell, S. Mackowski, and J. Niedziółka-Jönsson, “Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer,” Appl. Phys. Lett. 104(9), 093103 (2014).
[Crossref]

Carbon (2)

L. Guo, H. B. Jiang, R. Q. Shao, Y. L. Zhang, S. Y. Xie, J. N. Wang, X. B. Li, F. Jiang, Q. D. Chen, T. Zhang, and H. B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

S. Y. Xie, X. B. Li, Y. Y. Sun, Y. L. Zhang, D. Han, W. Q. Tian, W. Q. Wang, Y. S. Zheng, S. B. Zhang, and H. B. Sun, “Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals,” Carbon 52, 122–127 (2013).
[Crossref]

Chem. Asian J. (1)

J. N. Wang, R. Q. Shao, Y. L. Zhang, L. Guo, H. B. Jiang, D. X. Lu, and H. B. Sun, “Biomimetic graphene surfaces with superhydrophobicity and iridescence,” Chem. Asian J. 7(2), 301–304 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, and H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2014–2048 (2016).
[Crossref]

J. Phys. Chem. C (2)

L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, “Bandgap tailoring and synchronous microdevices patterning of graphene oxides,” J. Phys. Chem. C 116(5), 3594–3599 (2012).
[Crossref]

N. Liaros, S. Couris, E. Koudoumas, and P. A. Loukakos, “Ultrafast processes in graphene oxide during femtosecond laser excitation,” J. Phys. Chem. C 120(7), 4104–4111 (2016).
[Crossref]

J. Phys. Chem. Lett. (2)

Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011).
[Crossref]

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).
[Crossref]

Light Sci. Appl. (4)

D. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, and D. Z. Shen, “Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion,” Light Sci. Appl. 5(7), e16120 (2016).
[Crossref]

L. Wang, Q. Li, H. Y. Wang, J. C. Huang, R. Zhang, Q. D. Chen, H. L. Xu, W. Han, Z. Z. Shao, and H. B. Sun, “Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence,” Light Sci. Appl. 4(1), e245 (2015).
[Crossref]

X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lv, and D. B. Li, “Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors,” Light Sci. Appl. 5(10), e16130 (2016).
[Crossref]

W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz, and D. Hreniak, “Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene,” Light Sci. Appl. 4(1), e237 (2015).
[Crossref]

Nano Lett. (1)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Nano Res. (1)

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Nano Today (1)

Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Nanoscale (2)

L. Zhang, W. F. Dong, and H. B. Sun, “Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications,” Nanoscale 5(17), 7664–7684 (2013).
[Crossref] [PubMed]

Y. L. Zhang, Q. D. Chen, Z. Jin, E. Kim, and H. B. Sun, “Biomimetic graphene films and their properties,” Nanoscale 4(16), 4858–4869 (2012).
[Crossref] [PubMed]

Nat. Chem. (1)

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Opt. Mater. Express (3)

Phys. Chem. Chem. Phys. (1)

S. M. Tan, A. Ambrosi, B. Khezri, R. D. Webster, and M. Pumera, “Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities,” Phys. Chem. Chem. Phys. 16(15), 7058–7065 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Science (1)

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Steady-state absorption spectra of GO and rGOs reduced by (a) visible light and (b) UV light with different reduction time. The insets of Figs. 1(a) and 1(b) show the corresponding photographs of GO and rGOs reduced by visible light and UV light, respectively. Steady-state photoluminescence spectra (excited by 400 nm) of GO and rGOs reduced by (c) visible light and (d) UV light with different reduction time. The left panel of Figs. 1 (c) and 1(d) is the schematic diagram of visible/UV photo-reduced GO.
Fig. 2
Fig. 2 (a) Raman spectra of GO, rGO-Vis-23day and rGO-UV-30min. XPS C1s spectra of (b) GO, (c) rGO-Vis-23day and (d) rGO-UV-30min. (e) FTIR spectra of GO, rGO-Vis-23day and rGO-UV-30min.
Fig. 3
Fig. 3 Femtosecond transient absorption spectra of (a) GO, (b) rGO-Vis-23day and (c) rGO-UV-30min at different probe delay times which are excited by 400 nm pump light. The disturbances near 800 nm come from the limitation in probe light. (d) Normalized carrier dynamics probe at 450 nm of GO, rGO-Vis-23day and rGO-UV-30min in 400 nm excitation.
Fig. 4
Fig. 4 Femtosecond transient absorption spectra of (a) GO, (b) rGO-Vis-5h, (c) rGO-Vis-48h, (d) rGO-UV-5min and (e) rGO-UV-10min at different probe delay times which are excited by 530 nm pump light. The vertical lines at 530 nm are the scatters of pump light while the disturbances near 800 nm come from the limitation in probe light. (f) Normalized carrier dynamics probed at 415 nm of GO, rGO-Vis-5h, rGO-Vis-48h, rGO-UV-5min and rGO-UV-10min in 530 nm excitation.
Fig. 5
Fig. 5 Schematic diagram of visible (532nm) /UV (365nm) photo-reduced GO.

Metrics