Abstract

To obtain solution-processable graphene in bulk-quantities, the chemical route was widely used to prepare graphene oxide (GO); however, the reduction process was inevitably needed to transform insulating GO into semi-metallic reduced graphene oxide (rGO). Therefore, to obtain stable rGO dispersions, many researchers introduced insulating surfactants that prevent irreversible aggregation. Although insulating surfactants were introduced to produce the stable dispersion of rGO, some properties of rGO, such as its dispersibility, processability, and electricity, are still problematic. In order to solve these problems, we synthesized novel rGO (F-OH-rGO) using the reduction process after blending GO and fullerenol (F-OH). By replacing insulating polymers with semiconducting and highly water-soluble F-OH, F-OH-rGO with not only higher conductivity but also a high dispersion concentration as well as film-forming properties could be achieved. We introduced various GO derivatives as hole-transporting layers (HTLs) to organic solar cells (OSCs) with discrepancies in important properties, so the fabricated solar cells manifested significant differences in their performances as we expected.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  3. J. N. Coleman, “Liquid exfoliation of defect-free graphene,” Acc. Chem. Res. 46(1), 14–22 (2013).
    [Crossref] [PubMed]
  4. H. Gao, K. Zhu, G. Hu, and C. Xue, “Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium,” Chem. Eng. J. 308, 872–879 (2017).
    [Crossref]
  5. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
    [Crossref]
  6. C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
    [Crossref]
  7. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
    [Crossref]
  8. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
    [Crossref] [PubMed]
  9. S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4(4), 217–224 (2009).
    [Crossref] [PubMed]
  10. S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO),” Graphene 6(01), 1–18 (2017).
    [Crossref]
  11. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [Crossref] [PubMed]
  12. B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
    [Crossref]
  13. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
    [Crossref] [PubMed]
  14. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
    [Crossref]
  15. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
    [Crossref] [PubMed]
  16. I.-Y. Jeon, S.-Y. Bae, J.-M. Seo, and J.-B. Baek, “Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling,” Adv. Funct. Mater. 25(45), 6961–6975 (2015).
    [Crossref]
  17. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
    [Crossref]
  18. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
    [Crossref] [PubMed]
  19. J. M. Zhang, Y. Jian-Min, H. Wen, and Z. Ping, “Efficient and Convenient Preparation of Water-Soluble Fullerenol,” Chin. J. Chem. 22, 1008–1011 (2004).
  20. J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
    [Crossref] [PubMed]
  21. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
    [Crossref] [PubMed]
  22. R. F. Curl and R. E. Smalley, “Probing c60,” Science 242(4881), 1017–1022 (1988).
    [Crossref] [PubMed]
  23. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
    [Crossref] [PubMed]

2017 (4)

H. Gao, K. Zhu, G. Hu, and C. Xue, “Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium,” Chem. Eng. J. 308, 872–879 (2017).
[Crossref]

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO),” Graphene 6(01), 1–18 (2017).
[Crossref]

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

2015 (1)

I.-Y. Jeon, S.-Y. Bae, J.-M. Seo, and J.-B. Baek, “Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling,” Adv. Funct. Mater. 25(45), 6961–6975 (2015).
[Crossref]

2013 (2)

J. N. Coleman, “Liquid exfoliation of defect-free graphene,” Acc. Chem. Res. 46(1), 14–22 (2013).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

2011 (1)

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

2010 (3)

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

2009 (3)

S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4(4), 217–224 (2009).
[Crossref] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

2008 (1)

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

2007 (2)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (2)

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

2004 (3)

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

J. M. Zhang, Y. Jian-Min, H. Wen, and Z. Ping, “Efficient and Convenient Preparation of Water-Soluble Fullerenol,” Chin. J. Chem. 22, 1008–1011 (2004).

1988 (1)

R. F. Curl and R. E. Smalley, “Probing c60,” Science 242(4881), 1017–1022 (1988).
[Crossref] [PubMed]

Ahn, J. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Alam, S. N.

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO),” Graphene 6(01), 1–18 (2017).
[Crossref]

Bae, S.-Y.

I.-Y. Jeon, S.-Y. Bae, J.-M. Seo, and J.-B. Baek, “Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling,” Adv. Funct. Mater. 25(45), 6961–6975 (2015).
[Crossref]

Baek, J.-B.

I.-Y. Jeon, S.-Y. Bae, J.-M. Seo, and J.-B. Baek, “Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling,” Adv. Funct. Mater. 25(45), 6961–6975 (2015).
[Crossref]

Beige, A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Berger, C.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Bielawski, C. W.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Braunstein, S. L.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Brown, N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Chapman, M. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Chen, C.-W.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Chen, G.

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

Chen, X.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Chhowalla, M.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Cirac, I. J.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Cirac, J. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Coleman, J. N.

J. N. Coleman, “Liquid exfoliation of defect-free graphene,” Acc. Chem. Res. 46(1), 14–22 (2013).
[Crossref] [PubMed]

Conrad, E. H.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Cui, Y.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Curl, R. F.

R. F. Curl and R. E. Smalley, “Probing c60,” Science 242(4881), 1017–1022 (1988).
[Crossref] [PubMed]

Dai, Z.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

de Heer, W. A.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Dikin, D. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Divincenzo, D. P.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Dresselhaus, M. S.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Dreyer, D. R.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fang, M.

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

Feng, R.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

First, P. N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Gao, E.

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

Gao, H.

H. Gao, K. Zhu, G. Hu, and C. Xue, “Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium,” Chem. Eng. J. 308, 872–879 (2017).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, D.

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

Gilje, S.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

Goldberger, J. E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, G. C.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Han, C.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Hass, J.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

Heinz, T. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Horodecki, P.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Horodecki, R.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Hu, G.

H. Gao, K. Zhu, G. Hu, and C. Xue, “Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium,” Chem. Eng. J. 308, 872–879 (2017).
[Crossref]

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Jeon, I.-Y.

I.-Y. Jeon, S.-Y. Bae, J.-M. Seo, and J.-B. Baek, “Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling,” Adv. Funct. Mater. 25(45), 6961–6975 (2015).
[Crossref]

Jeong, H. G.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Jia, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jian-Min, Y.

J. M. Zhang, Y. Jian-Min, H. Wen, and Z. Ping, “Efficient and Convenient Preparation of Water-Soluble Fullerenol,” Chin. J. Chem. 22, 1008–1011 (2004).

Johnston-Halperin, E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Kaner, R. B.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

Kennedy, T. A. B.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Kim, D. Y.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kim, J.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, S. S.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kimble, H. J.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Kohlhaas, K. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Kok, P.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Kong, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Ku, B. C.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kumar, L.

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO),” Graphene 6(01), 1–18 (2017).
[Crossref]

Kuno, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Kuzmich, A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Kwek, L. C.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Li, D.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

Li, S.-S.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Li, T.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Li, X.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Lin, C.-C.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Liu, C.

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

Liu, X.

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

Lukin, M. D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Luo, B.

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

Marchenkov, A. N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Mayou, D.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Muller, M. B.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

Müller, M. B.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

Na, S. I.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Naud, C.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Nguyen, S. B. T.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Nguyen, S. T.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Nielsen, M.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Noh, Y. J.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ogbazghi, A. Y.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Park, S.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4(4), 217–224 (2009).
[Crossref] [PubMed]

Pati, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Piner, R. D.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Ping, Z.

J. M. Zhang, Y. Jian-Min, H. Wen, and Z. Ping, “Efficient and Convenient Preparation of Water-Soluble Fullerenol,” Chin. J. Chem. 22, 1008–1011 (2004).

Plashnitsa, V. V.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Polyakov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Polzik, E. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Robinson, R. D.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Ruoff, R. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4(4), 217–224 (2009).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Salahuddin, S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Sauer, J. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Seo, J.-M.

I.-Y. Jeon, S.-Y. Bae, J.-M. Seo, and J.-B. Baek, “Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling,” Adv. Funct. Mater. 25(45), 6961–6975 (2015).
[Crossref]

Shan, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Sharma, N.

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO),” Graphene 6(01), 1–18 (2017).
[Crossref]

Shi, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Smalley, R. E.

R. F. Curl and R. E. Smalley, “Probing c60,” Science 242(4881), 1017–1022 (1988).
[Crossref] [PubMed]

Smolin, J. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Song, Z.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

Spencer, M. G.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Stankovich, S.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Tan, J.

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

Terrones, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Tu, K.-H.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Variables, C.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Vedral, V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Wallace, G. G.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

Wang, H.

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

Wang, L.

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

Wang, Q.

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

Wen, H.

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

J. M. Zhang, Y. Jian-Min, H. Wen, and Z. Ping, “Efficient and Convenient Preparation of Water-Soluble Fullerenol,” Chin. J. Chem. 22, 1008–1011 (2004).

Windl, W.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Wu, F.

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

Wu, H.

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

Wu, N.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Wu, X.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

Wu, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Xu, Z.

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

Xue, C.

H. Gao, K. Zhu, G. Hu, and C. Xue, “Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium,” Chem. Eng. J. 308, 872–879 (2017).
[Crossref]

Xue, P.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Yeo, J. S.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

You, L.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Yu, G.

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

Yun, J. M.

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Zangwill, A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, C.

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

Zhang, J. M.

J. M. Zhang, Y. Jian-Min, H. Wen, and Z. Ping, “Efficient and Convenient Preparation of Water-Soluble Fullerenol,” Chin. J. Chem. 22, 1008–1011 (2004).

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, W.

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Zhu, K.

H. Gao, K. Zhu, G. Hu, and C. Xue, “Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium,” Chem. Eng. J. 308, 872–879 (2017).
[Crossref]

Zoller, P.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. N. Coleman, “Liquid exfoliation of defect-free graphene,” Acc. Chem. Res. 46(1), 14–22 (2013).
[Crossref] [PubMed]

ACS Nano (2)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

I.-Y. Jeon, S.-Y. Bae, J.-M. Seo, and J.-B. Baek, “Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling,” Adv. Funct. Mater. 25(45), 6961–6975 (2015).
[Crossref]

Adv. Mater. (1)

J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Carbon (1)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Chem. Eng. J. (1)

H. Gao, K. Zhu, G. Hu, and C. Xue, “Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium,” Chem. Eng. J. 308, 872–879 (2017).
[Crossref]

Chem. Mater. (1)

B. Luo, E. Gao, D. Geng, H. Wang, Z. Xu, and G. Yu, “Etching-controlled growth of graphene by chemical vapor deposition,” Chem. Mater. 29(3), 1022–1027 (2017).
[Crossref]

Chem. Soc. Rev. (1)

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Chin. J. Chem. (1)

J. M. Zhang, Y. Jian-Min, H. Wen, and Z. Ping, “Efficient and Convenient Preparation of Water-Soluble Fullerenol,” Chin. J. Chem. 22, 1008–1011 (2004).

Graphene (1)

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO),” Graphene 6(01), 1–18 (2017).
[Crossref]

J. Mater. Chem. (2)

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem. 20(28), 5817 (2010).
[Crossref]

J. Phys. Chem. B (1)

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108(52), 19912–19916 (2004).
[Crossref]

J. Power Sources (1)

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, “Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode,” J. Power Sources 342, 157–164 (2017).
[Crossref]

Nano Lett. (1)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008).
[Crossref] [PubMed]

S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4(4), 217–224 (2009).
[Crossref] [PubMed]

Nature (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Science (3)

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, V. Vedral, E. S. Polzik, C. Variables, S. L. Braunstein, A. K. Pati, M. D. Lukin, I. J. Cirac, P. Zoller, C. Han, P. Xue, G. C. Guo, S. V. Polyakov, A. Kuzmich, H. J. Kimble, J. I. Cirac, T. A. B. Kennedy, P. Horodecki, R. Horodecki, D. P. Divincenzo, J. A. Smolin, A. Beige, L. C. Kwek, P. Kok, J. A. Sauer, L. You, A. Zangwill, M. S. Chapman, and M. Nielsen, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

R. F. Curl and R. E. Smalley, “Probing c60,” Science 242(4881), 1017–1022 (1988).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Synthetic scheme of fullerenol (F-OH), and (b) Schematic illustration of F-OH-rGO, F-OH(1/4)-rGO, and rGO preparation.

Fig. 2
Fig. 2

AFM images of GO derivatives.

Fig. 3
Fig. 3

The XPS C 1s spectra of GO derivatives via various reduction process and observed their differences of C-O functionality.

Fig. 4
Fig. 4

(a) Schematic device structure of OSCs with interfacial layers by GO derivatives. (b) The current density-voltage (J-V) characteristics of OSCs with various GO derivatives.

Fig. 5
Fig. 5

(a) UPS spectra and (b) Conductivity by 4-point probe of GO derivatives.

Tables (2)

Tables Icon

Table 1 Photovoltaic parameters for P3HT:PC61BM BHJ solar cells based on different interfacial layers.

Tables Icon

Table 2 Work function and conductivity values of GO derivatives.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=1/(Rd)

Metrics