Abstract

To elucidate the persistent luminescence mechanism of the Ce3+-Cr3+-codoped Y3Al2Ga3O12 garnet (YAGG), the valence states of Ce and Cr ions before and during UV charging were investigated by X-ray absorption near edge structure (XANES) spectroscopy. In the XANES spectra for Ce LIII and Cr K edges of YAGG:Ce3+-Cr3+ under UV illumination, the valence states of Ce4+ and Cr2+ were detected, but not in the XANES spectra of YAGG:Ce3+ and YAGG:Cr3+. We conclude that the combination of Ce3+ and Cr3+ causes the valence state change into Ce4+ and Cr2+ by UV illumination, which is the mechanism of persistent luminescence.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Persistent luminescence mechanisms: human imagination at work

Hermi F. Brito, Jorma Hölsä, Taneli Laamanen, Mika Lastusaari, Marja Malkamäki, and Lucas C. V. Rodrigues
Opt. Mater. Express 2(4) 371-381 (2012)

Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics

Jumpei Ueda, Tatsuaki Shinoda, and Setsuhisa Tanabe
Opt. Mater. Express 3(6) 787-793 (2013)

Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor

Yumiko Katayama, Jumpei Ueda, and Setsuhisa Tanabe
Opt. Mater. Express 4(4) 613-623 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  2. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
    [Crossref]
  3. K. Van den Eeckhout, D. Poelman, and P. Smet, “Persistent luminescence in non-Eu2+-doped Compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
    [Crossref]
  4. J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
    [Crossref] [PubMed]
  5. J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
    [Crossref]
  6. J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
    [Crossref]
  7. J. Ueda, “Analysis of optoelectronic properties and development of new persistent phosphor in Ce3+-doped garnet ceramics,” J. Ceram. Soc. Jpn. 123(1444), 1059–1064 (2015).
    [Crossref]
  8. J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102(0), 47–50 (2015).
    [Crossref]
  9. J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
    [Crossref]
  10. Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
    [Crossref]
  11. S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
    [Crossref]
  12. J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
    [Crossref]
  13. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
    [Crossref]
  14. J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102 (2011).
    [Crossref] [PubMed]
  15. P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE=Gd, Y, Lu) Garnet Compounds,” J. Lumin. 134(0), 310–318 (2013).
    [Crossref]
  16. K. L. Fujdala and T. D. Tilley, “Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane,” J. Catal. 218(1), 123–134 (2003).
    [Crossref]

2015 (4)

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Ueda, “Analysis of optoelectronic properties and development of new persistent phosphor in Ce3+-doped garnet ceramics,” J. Ceram. Soc. Jpn. 123(1444), 1059–1064 (2015).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102(0), 47–50 (2015).
[Crossref]

2014 (1)

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

2013 (2)

K. Van den Eeckhout, D. Poelman, and P. Smet, “Persistent luminescence in non-Eu2+-doped Compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE=Gd, Y, Lu) Garnet Compounds,” J. Lumin. 134(0), 310–318 (2013).
[Crossref]

2011 (2)

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102 (2011).
[Crossref] [PubMed]

2010 (2)

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

2009 (1)

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

2004 (1)

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

2003 (1)

K. L. Fujdala and T. D. Tilley, “Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane,” J. Catal. 218(1), 123–134 (2003).
[Crossref]

1998 (1)

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Bos, A. J. J.

J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

Botterman, J.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Carlson, S.

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Dorenbos, P.

J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE=Gd, Y, Lu) Garnet Compounds,” J. Lumin. 134(0), 310–318 (2013).
[Crossref]

Fujdala, K. L.

K. L. Fujdala and T. D. Tilley, “Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane,” J. Catal. 218(1), 123–134 (2003).
[Crossref]

Hirao, K.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
[Crossref]

Hölsä, J.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Kawasaki, M.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
[Crossref]

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Kuroishi, K.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102(0), 47–50 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

Laamanen, T.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Lastusaari, M.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Liu, M.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Luo, X.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Malkamäki, M.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nakanishi, T.

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102 (2011).
[Crossref] [PubMed]

Niittykoski, J.

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Poelman, D.

K. Van den Eeckhout, D. Poelman, and P. Smet, “Persistent luminescence in non-Eu2+-doped Compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Qi, Z.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Qiu, J.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
[Crossref]

Shi, C.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Shimizugawa, Y.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
[Crossref]

Smet, P.

K. Van den Eeckhout, D. Poelman, and P. Smet, “Persistent luminescence in non-Eu2+-doped Compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Smet, P. F.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102(0), 47–50 (2015).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102 (2011).
[Crossref] [PubMed]

Tanaka, K.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
[Crossref]

Tilley, T. D.

K. L. Fujdala and T. D. Tilley, “Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane,” J. Catal. 218(1), 123–134 (2003).
[Crossref]

Ueda, J.

J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102(0), 47–50 (2015).
[Crossref]

J. Ueda, “Analysis of optoelectronic properties and development of new persistent phosphor in Ce3+-doped garnet ceramics,” J. Ceram. Soc. Jpn. 123(1444), 1059–1064 (2015).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102 (2011).
[Crossref] [PubMed]

Valtonen, R.

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, D. Poelman, and P. Smet, “Persistent luminescence in non-Eu2+-doped Compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Welter, E.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

Xie, Y.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Xu, J.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102(0), 47–50 (2015).
[Crossref]

Zajac, D. A.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

Zhang, J.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Zhou, D.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Appl. Phys. Lett. (1)

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

J. Appl. Phys. (1)

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102 (2011).
[Crossref] [PubMed]

J. Catal. (1)

K. L. Fujdala and T. D. Tilley, “Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane,” J. Catal. 218(1), 123–134 (2003).
[Crossref]

J. Ceram. Soc. Jpn. (1)

J. Ueda, “Analysis of optoelectronic properties and development of new persistent phosphor in Ce3+-doped garnet ceramics,” J. Ceram. Soc. Jpn. 123(1444), 1059–1064 (2015).
[Crossref]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Lumin. (1)

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE=Gd, Y, Lu) Garnet Compounds,” J. Lumin. 134(0), 310–318 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Phys. Chem. Solids (1)

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids 59(9), 1521–1525 (1998).
[Crossref]

Materials (Basel) (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. Smet, “Persistent luminescence in non-Eu2+-doped Compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater. 31(12), 1877–1879 (2009).
[Crossref]

Phys. Rev. B (1)

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Phys. Status Solidi, A Appl. Res. (1)

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi, A Appl. Res. 201(14), 3109–3112 (2004).
[Crossref]

Scr. Mater. (1)

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102(0), 47–50 (2015).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (1)

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta B At. Spectrosc. 65(4), 301–305 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Persistent luminescence spectra (μW/sr/m2/nm) of Y3Al2Ga3O12:Ce3+ and Y3Al2Ga3O12:Ce3+-Cr3+ 5 min after ceasing 460 nm excitation for 5 min, (inset) photograph of samples under white-LED and after ceasing white-LED illumination.
Fig. 2
Fig. 2 (a) XANES spectra of Ce LIII edge in Y3Al2Ga3O12:Ce3+-Cr3+ illuminated with and without UV light and Y3Al2Ga3O12:Ce3+ illuminated with UV light, (b) reference XANES spectra of Ce(NO3)3 and CeO2.
Fig. 3
Fig. 3 (a) XANES spectra of Cr K edge in Y3Al2Ga3O12:Ce3+-Cr3+ illuminated with and without UV light and Y3Al2Ga3O12:Cr3+ illuminated with UV light, (b) reference XANES spectra of Cr2O3 and CrCl2 [16].

Metrics