Abstract

The tunable electro-optical properties of U-shaped-alignment (USA) in-plane switching (IPS) liquid crystal (LC) devices are successfully developed by adjusting the curing voltage (VCU) and the surface-anchored crosslinking monomer concentration during the polymerization process. As the VCU is increased, the threshold voltage and maximum-output-light-transmittance voltage are reduced, attributed to the pretilt effect on the LC molecular configuration. Furthermore, the dark-state brightness and the response performance are also changed. Of all the proposed devices, the 2-wt.% USA-IPS LC device through 2-V VCU treatment is the best candidate for the fast switching applications. This fabricated method will benefit the design of device properties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks

Guan-Jhong Lin, Tien-Jung Chen, Bo-Yu Chen, Jin-Jei Wu, and Ying-Jay Yang
Opt. Mater. Express 4(8) 1657-1667 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [Crossref]
  2. R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
    [Crossref]
  3. Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
    [Crossref]
  4. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
    [Crossref]
  5. M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
    [Crossref]
  6. K. Kawabe, T. Furuhashi, and Y. Tanaka, “New TFT-LCD driving method for improved moving picture quality,” SID Symp. Dig. Tech. Pap. 32(1), 998–1001 (2001).
    [Crossref]
  7. S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
    [Crossref]
  8. Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
    [Crossref]
  9. G. M. Wu, H. W. Chien, J. W. Huang, and H. L. Zeng, “Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays,” Nanotechnology 21(13), 134022 (2010).
    [Crossref] [PubMed]
  10. S. J. Hwang, S. C. Jeng, and I. M. Hsieh, “Nanoparticle-doped polyimide for controlling the pretilt angle of liquid crystals devices,” Opt. Express 18(16), 16507–16512 (2010).
    [Crossref] [PubMed]
  11. M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic alignment by single oblique evaporation of SiO2 and its application to high resolution microdisplays,” SID Symp. Dig. Tech. Pap., 29, 446–449 (2000).
  12. F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
    [Crossref]
  13. D. Ahn, Y. C. Jeong, S. Lee, J. Lee, Y. Heo, and J. K. Park, “Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks,” Opt. Express 17(19), 16603–16612 (2009).
    [Crossref] [PubMed]
  14. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
    [Crossref]
  15. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
    [Crossref]
  16. S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
    [Crossref]
  17. S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
    [Crossref]
  18. J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
    [Crossref]
  19. S. H. Lim, D. H. Kim, S. J. Shin, W. C. Woo, H. S. Jin, S. H. Lee, E. Y. Kim, and S. E. Lee, “Polymer Stabilized In-Plane Field Driven Vertical Alignment Liquid Crystal Device,” SID Symp. Dig. Tech. Pap. 42(1), 1645–1647 (2011).
    [Crossref]
  20. S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
    [Crossref]
  21. S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
    [Crossref]
  22. Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
    [Crossref] [PubMed]
  23. G. J. Lin, T. J. Chen, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
    [Crossref]
  24. T. J. Chen, G. J. Lin, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Optimized electro-optical properties of polymer-stabilized vertical-aligned liquid crystal displays driven by an in-plane field,” Displays 37, 94–99 (2015).
    [Crossref]
  25. G. J. Lin, T. J. Chen, Y. W. Tsai, Y. T. Lin, J. J. Wu, and Y. J. Yang, “Performance enhancement using a non-uniform vertical electric field and polymer networks for in-plane switching of multi-pretilt, vertically aligned liquid crystal devices,” Opt. Lett. 39(21), 6225–6228 (2014).
    [Crossref] [PubMed]
  26. G. J. Lin, T. J. Chen, Y. W. Tsai, and J. J. Wu, “Effects of U-shaped alignment and surface-anchored polymer morphology on the electro-optical properties of in-plane-switching vertically aligned liquid crystal devices,” Opt. Mater. Express 6(9), 3008–3019 (2016).
    [Crossref]
  27. X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
    [Crossref]
  28. G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).
  29. X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
    [Crossref]
  30. A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
    [Crossref] [PubMed]
  31. G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976). 720) Liquid-crystal devices.
    [Crossref]
  32. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
    [Crossref]

2016 (1)

2015 (2)

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

T. J. Chen, G. J. Lin, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Optimized electro-optical properties of polymer-stabilized vertical-aligned liquid crystal displays driven by an in-plane field,” Displays 37, 94–99 (2015).
[Crossref]

2014 (3)

2013 (1)

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

2011 (1)

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

2010 (3)

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

G. M. Wu, H. W. Chien, J. W. Huang, and H. L. Zeng, “Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays,” Nanotechnology 21(13), 134022 (2010).
[Crossref] [PubMed]

S. J. Hwang, S. C. Jeng, and I. M. Hsieh, “Nanoparticle-doped polyimide for controlling the pretilt angle of liquid crystals devices,” Opt. Express 18(16), 16507–16512 (2010).
[Crossref] [PubMed]

2009 (4)

D. Ahn, Y. C. Jeong, S. Lee, J. Lee, Y. Heo, and J. K. Park, “Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks,” Opt. Express 17(19), 16603–16612 (2009).
[Crossref] [PubMed]

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

2007 (3)

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

2006 (3)

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

2005 (2)

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

2004 (2)

F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[Crossref]

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

1997 (1)

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Ahn, D.

Chen, B. Y.

T. J. Chen, G. J. Lin, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Optimized electro-optical properties of polymer-stabilized vertical-aligned liquid crystal displays driven by an in-plane field,” Displays 37, 94–99 (2015).
[Crossref]

G. J. Lin, T. J. Chen, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
[Crossref]

Chen, T. J.

Chien, H. W.

G. M. Wu, H. W. Chien, J. W. Huang, and H. L. Zeng, “Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays,” Nanotechnology 21(13), 134022 (2010).
[Crossref] [PubMed]

Chien, L. C.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

Chigrinov, V.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Cho, I. Y.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

Choi, Y. E.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

Dark, M. L.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Furuta, K.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Ge, Z.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Guan, R. H.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Gwag, J. S.

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

Heo, Y.

Higuchi, H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Ho, J.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Hsieh, I. M.

Huang, J. W.

G. M. Wu, H. W. Chien, J. W. Huang, and H. L. Zeng, “Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays,” Nanotechnology 21(13), 134022 (2010).
[Crossref] [PubMed]

Hwang, S. J.

Jeng, S. C.

Jeong, K. U.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

Jeong, Y. C.

Jin, H. S.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

Jo, S. I.

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

Kang, S. G.

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

Kang, S. W.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

Kang, W. X.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Kikuchi, H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Kim, D. H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Kim, H. Y.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Kim, J. H.

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

Kim, K. H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, K. J.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, S. H.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

Kim, S. M.

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, W.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

Kim, Y. K.

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Koda, T.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Komitov, L.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Kundu, S.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

Kwok, H. S.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[Crossref]

Lai, K. Y.

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

Lee, B. H.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

Lee, C. H.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Lee, F. K.

F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[Crossref]

Lee, G. D.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, J.

Lee, J. H.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Lee, M. J.

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

Lee, S.

Lee, S. H.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Lee, T.-R.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Lee, Y. J.

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

Lim, Y. J.

Lin, G. J.

Lin, Y. H.

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Lin, Y. T.

Lu, R.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

Lyu, J. J.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Momoi, Y.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Moore, M. H.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Murauski, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Muravsky, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Nie, X.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Oh, C. H.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Park, H. S.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Park, I. C.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Park, J. K.

Park, J. S.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Park, Y. R.

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

Rho, B. G.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Shashidhar, R.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Sheng, P.

F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[Crossref]

Shenoy, D. K.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Son, J.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

Sun, Y. B.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Tamai, K.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Tsai, Y. W.

Tsui, O. K. C.

F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[Crossref]

Wang, H.

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Wu, G. M.

G. M. Wu, H. W. Chien, J. W. Huang, and H. L. Zeng, “Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays,” Nanotechnology 21(13), 134022 (2010).
[Crossref] [PubMed]

Wu, J. J.

Wu, S. T.

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Wu, T. X.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Xianyu, H.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Yang, Y. J.

T. J. Chen, G. J. Lin, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Optimized electro-optical properties of polymer-stabilized vertical-aligned liquid crystal displays driven by an in-plane field,” Displays 37, 94–99 (2015).
[Crossref]

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

G. J. Lin, T. J. Chen, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
[Crossref]

G. J. Lin, T. J. Chen, Y. W. Tsai, Y. T. Lin, J. J. Wu, and Y. J. Yang, “Performance enhancement using a non-uniform vertical electric field and polymer networks for in-plane switching of multi-pretilt, vertically aligned liquid crystal devices,” Opt. Lett. 39(21), 6225–6228 (2014).
[Crossref] [PubMed]

Yeung, F. S. Y.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Yun, Y. K.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

Zeng, H. L.

G. M. Wu, H. W. Chien, J. W. Huang, and H. L. Zeng, “Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays,” Nanotechnology 21(13), 134022 (2010).
[Crossref] [PubMed]

Zhang, B.

F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[Crossref]

Zhu, X.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

Appl. Phys. Lett. (5)

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

F. K. Lee, B. Zhang, P. Sheng, O. K. C. Tsui, and H. S. Kwok, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[Crossref]

Displays (1)

T. J. Chen, G. J. Lin, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Optimized electro-optical properties of polymer-stabilized vertical-aligned liquid crystal displays driven by an in-plane field,” Displays 37, 94–99 (2015).
[Crossref]

J. Appl. Phys. (2)

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

J. Disp. Technol. (1)

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

J. Polym. Sci. Part B Polym. Phys. (1)

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

J. Soc. Inf. Disp. (3)

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(33R), 032405 (2009).
[Crossref]

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

Liq. Cryst. (3)

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2013).
[Crossref]

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Nanotechnology (1)

G. M. Wu, H. W. Chien, J. W. Huang, and H. L. Zeng, “Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays,” Nanotechnology 21(13), 134022 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Other (5)

G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976). 720) Liquid-crystal devices.
[Crossref]

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
[Crossref]

K. Kawabe, T. Furuhashi, and Y. Tanaka, “New TFT-LCD driving method for improved moving picture quality,” SID Symp. Dig. Tech. Pap. 32(1), 998–1001 (2001).
[Crossref]

M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic alignment by single oblique evaporation of SiO2 and its application to high resolution microdisplays,” SID Symp. Dig. Tech. Pap., 29, 446–449 (2000).

S. H. Lim, D. H. Kim, S. J. Shin, W. C. Woo, H. S. Jin, S. H. Lee, E. Y. Kim, and S. E. Lee, “Polymer Stabilized In-Plane Field Driven Vertical Alignment Liquid Crystal Device,” SID Symp. Dig. Tech. Pap. 42(1), 1645–1647 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustrations of the fabrication process of USA (pretilt) configuration and LC molecular orientation for a USA-IPS device. Step 1 shows that the V-PI is coated on the ITO and IPS substrate surfaces. The processed substrates are baked at 200 °C for 1 hr as shown in Step 2. Step 3 shows the UV curing process by applying the TA-9164 monomer, VCU and UV light to the pure VA-IPS LC device. The induced U-shaped curing electric field is shown with dashed lines. Step 4 shows the LC molecular reorientation when the IPS electric field induced by VIPS is applied to the fabricated USA-IPS LC/polymer device. The inserted SEM image shows the crosslinking morphology of TA-9164 polymers on the substrate surface.
Fig. 2
Fig. 2 (a) T-V curve for the pure E7 LC device in the presence of different curing voltages. The inserted POM and conoscopic images show the VCU-dependent brightness and pretilt configuration of the pure E7 LC device. As the VCU is increased, the reticle, labeled by the red line in the conoscopic image at a VCU of 0 V, will be distorted and eliminated. (b) and (c) effect of the small and large VCU on the LC molecular configuration, respectively. The small VCU makes the small U-shaped (pretilt) structure, and most LC molecules are vertically aligned and perpendicular to the substrate surface. However, the large VCU drives more LC molecules located on the IPS-electrode edge and space (s), making the obviously U-shaped (pretilt) structure.
Fig. 3
Fig. 3 Normalized T-V curves for the 1- and 2-wt.% USA-IPS devices with different curing voltages during the USA configuration process, are shown in (a) and (b), respectively.
Fig. 4
Fig. 4 Optically switching tr/tf responses for (a)/(c) 1-wt.% and (b)/(d) 2-wt.% USA-IPS devices with different kinds of curing voltages, respectively.
Fig. 5
Fig. 5 Gray-level tr and tf responses for the different kinds of IPS-based devices, shown in (a) and (b), respectively. The VCU of the selected 1- and 2-wt.% USA-IPS devices is 2 V. The inserted T-V curve in (a) shows that the 2-wt.% USA-IPS devices at the VCU of 2 V has the largest VTmax value.

Tables (2)

Tables Icon

Table 1 Electrical properties of the USA-IPS devices with different kinds of fabrication conditions.

Tables Icon

Table 2 Optical-switch responses of the USA-IPS devices with different kinds of fabrication conditions.

Metrics