Abstract

Double-crucible cane fabrication of highly purified chalcogenide-glass was combined with multimaterial thermal fiber drawing to produce robust low-loss 0.2 NA chalcogenide fibers. Optical transmission losses were shown to be less than 1.1 dB/m at wavelengths of 1.5, 2.0 and 4.6 μm. Fiber transmission > 97% at the 1.5 μm design wavelength was demonstrated using single-layer anti-reflection coatings that were durable under temperature, humidity and abrasion tests. Tensile-strength tests proved that the mechanical strength of the fiber was improved by a factor of 1000 compared to a jacket-free chalcogenide fiber. Multiwatt power transmission in single mode fiber was demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Harrington, Infrared Fibers and Their Applications, SPIE Press, Bellingham, WA (2003).
  2. G. Fernando, D. Webb, and P. Ferdinand, ”Optical-Fiber Sensors,” MRS Bulletin 27, 359–364 (2002).
    [Crossref]
  3. M. Horiguchi and H. Osanai, “Spectral losses of low-OH-content optical fibres,” Electron. Lett. 12, 310–312 (1976).
    [Crossref]
  4. Technical Glass Products (2017), www.technicalglass.com/fused_quartz_transmission.html
  5. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
    [Crossref]
  6. J. A. Harrington, “Infrared Fibers,” in Handbook of Optics Vol. V, M. Bass, C. MacDonald, G. Li, C. M. DeCustis, and V. N. Mahajan, eds. (McGraw Hill, 2010).
  7. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
    [Crossref]
  8. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
    [Crossref] [PubMed]
  9. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Science 3, 349–368 (2012).
    [Crossref]
  10. M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
    [Crossref]
  11. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
    [Crossref] [PubMed]
  12. A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
    [Crossref] [PubMed]
  13. F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
    [Crossref]
  14. F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
    [Crossref] [PubMed]
  15. M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
    [Crossref]
  16. M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
    [Crossref]
  17. O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
    [Crossref] [PubMed]
  18. A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
    [Crossref]
  19. A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
    [Crossref] [PubMed]
  20. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
    [Crossref] [PubMed]
  21. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
    [Crossref] [PubMed]
  22. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
    [Crossref]
  23. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
    [Crossref]
  24. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
    [Crossref] [PubMed]
  25. F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).
  26. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
    [Crossref]
  27. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
    [Crossref]
  28. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
    [Crossref] [PubMed]
  29. J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
    [Crossref] [PubMed]
  30. S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
    [Crossref] [PubMed]

2016 (1)

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

2015 (2)

2012 (6)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Science 3, 349–368 (2012).
[Crossref]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

2010 (2)

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

2009 (2)

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

2007 (2)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

2006 (4)

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

2005 (1)

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

2004 (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

2003 (1)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

2002 (1)

G. Fernando, D. Webb, and P. Ferdinand, ”Optical-Fiber Sensors,” MRS Bulletin 27, 359–364 (2002).
[Crossref]

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[Crossref]

1995 (1)

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

1984 (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

1976 (1)

M. Horiguchi and H. Osanai, “Spectral losses of low-OH-content optical fibres,” Electron. Lett. 12, 310–312 (1976).
[Crossref]

Abouraddy, A. F.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Science 3, 349–368 (2012).
[Crossref]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Aggarwal, I.

Aggarwal, I. D.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Alvarez, O.

F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).

Arnold, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

Badding, J. V.

Bai, Y.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

Ballato, J.

Banaei, E.-H.

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

Bouchenot, T.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

Brewster, M. M.

Busse, L.

Busse, L. E.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Chenard, F.

F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).

Chocat, N.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Chua, S. L.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

Danto, S.

Delfyett, P. J.

Deng, D. S.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

Ebendorff-Heidepriem, H.

Egusa, S.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Ferdinand, P.

G. Fernando, D. Webb, and P. Ferdinand, ”Optical-Fiber Sensors,” MRS Bulletin 27, 359–364 (2002).
[Crossref]

Fernando, G.

G. Fernando, D. Webb, and P. Ferdinand, ”Optical-Fiber Sensors,” MRS Bulletin 27, 359–364 (2002).
[Crossref]

Fink, Y.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Florea, C.

Gordon, A. P.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

Gumennik, A.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

Harrington, J.

J. Harrington, Infrared Fibers and Their Applications, SPIE Press, Bellingham, WA (2003).

Harrington, J. A.

J. A. Harrington, “Infrared Fibers,” in Handbook of Optics Vol. V, M. Bass, C. MacDonald, G. Li, C. M. DeCustis, and V. N. Mahajan, eds. (McGraw Hill, 2010).

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Hinczewski, D. S.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

Horiguchi, M.

M. Horiguchi and H. Osanai, “Spectral losses of low-OH-content optical fibres,” Electron. Lett. 12, 310–312 (1976).
[Crossref]

Hou, C.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

Hoy, R. S.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

Ibanescu, M.

Joannopoulos, J. D.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Johnson, S. G.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

Kaufman, J. J.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref] [PubMed]

Kung, F. H.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

Lestoquoy, G.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

Liang, X.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

Marquez, M. P.

McDaniel, W.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

Miklos, F.

Miklos, R. E.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

Moawad, H.

F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).

Mossadegh, R.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Nguyen, D.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

Orf, N. D.

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

Osanai, H.

M. Horiguchi and H. Osanai, “Spectral losses of low-OH-content optical fibres,” Electron. Lett. 12, 310–312 (1976).
[Crossref]

Piracha, M. U.

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

Pureza, P. C.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Qiao, Y.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

Rakich, P. T.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Rodriguez, A.

Rose, A.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

Ruff, Z. M.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Sanghera, J.

Sanghera, J. S.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

Saygin-Hinczewski, D.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

Schell, B. R.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

Shabahang, S.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref] [PubMed]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref] [PubMed]

Shapira, O.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

Shaw, B.

Shemuly, D.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

Sorin, F.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Spencer, M.

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Science 3, 349–368 (2012).
[Crossref]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

Tao, G.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Science 3, 349–368 (2012).
[Crossref]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref] [PubMed]

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

Viens, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

O. Shapira, K. Kuriki, N. Orf, A. F. Abouraddy, G. Benoit, J. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, ”Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006).
[Crossref] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Wang, Z.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Webb, D.

G. Fernando, D. Webb, and P. Ferdinand, ”Optical-Fiber Sensors,” MRS Bulletin 27, 359–364 (2002).
[Crossref]

Wei, L.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

Zhang, X. H.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

Adv. Mater. (3)

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: A geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Electron. Lett. (1)

M. Horiguchi and H. Osanai, “Spectral losses of low-OH-content optical fibres,” Electron. Lett. 12, 310–312 (1976).
[Crossref]

I. J. Appl. Glass Science (1)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Science 3, 349–368 (2012).
[Crossref]

IEEE J. Sel. Top. Quant. Elect. (1)

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quant. Elect. 12, 1202–1213 (2006).
[Crossref]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

J. Lightwave Technol. (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

J. Non-Cryst. Solids (2)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[Crossref]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

MRS Bulletin (1)

G. Fernando, D. Webb, and P. Ferdinand, ”Optical-Fiber Sensors,” MRS Bulletin 27, 359–364 (2002).
[Crossref]

Nano Lett. (1)

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
[Crossref] [PubMed]

Nat. Mater. (4)

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport,” Nat. Mater. 4, 820–825 (2005).
[Crossref]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5, 532–536 (2006).
[Crossref] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010).
[Crossref] [PubMed]

Nat. Photon. (1)

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photon. 6, 229–233 (2012).
[Crossref]

Nature (3)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref] [PubMed]

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534, 529–533 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
[Crossref]

F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).

Other (3)

J. A. Harrington, “Infrared Fibers,” in Handbook of Optics Vol. V, M. Bass, C. MacDonald, G. Li, C. M. DeCustis, and V. N. Mahajan, eds. (McGraw Hill, 2010).

J. Harrington, Infrared Fibers and Their Applications, SPIE Press, Bellingham, WA (2003).

Technical Glass Products (2017), www.technicalglass.com/fused_quartz_transmission.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Double-crucible fabrication of a high-purity ChG cane. (b) Thermal fiber drawing of a preform into a fiber.

Fig. 2
Fig. 2

(a) Front view, (b) side view, and (c) 3D view of the cane puller used to maintain constant cane diameter and straightness during drawing from the double-crucible furnace. The system consists of two synchronized stepper motors, a gearhead to achieve torque and speed requirements, in addition to soft belts which grab the cane and pull it on it at a very low speed of ≈ 0.5 − 1 cm/min.

Fig. 3
Fig. 3

(a) Rod-in-tube assembly, (b) assembled preform showing a ChG core-cladding rod 60 mm long and 2.6 mm in diameter inserted into a 15.5 mm diameter PEI jacket and (c) photo of drawn fiber.

Fig. 4
Fig. 4

(a) SEM of the fiber tip showing dimensions of the PEI jacket and the ChG cladding. The ChG core is not distinguishable from the ChG cladding. (b) Optical photo of the tip with the core illuminated by a 1.55 μm laser beam coupled into the other end.

Fig. 5
Fig. 5

Phase contrast microscope view of the fiber from the side. Two overlapping photos are shown because the ChG rod was not perfectly centered in the PEI cylinder resulting in sharp foci at different depths. Note that the cylindrical surfaces result in magnification so the relative sizes of the cylindrical layers must be corrected for magnification factors that vary with location.

Fig. 6
Fig. 6

Transmission of a bent ChG fiber at 4.6 μm. The square symbol values were measured using a π/2 radians bend (90° bend). The triangle symbol was measured for a 4π radian bend (two-loop bend). Transmission is an absolute value and includes coupling losses and Fresnel losses.

Fig. 7
Fig. 7

(a) ChG fiber tip with Al2O3 single layer, quarter wave, antireflection coating. (b) Diagram of fiber transmission measurements.

Fig. 8
Fig. 8

Measurement of fiber transmission at 1.95 μm. (a) setup schematic, (b) Output/input power ratio with power measurements made at the locations marked P1 (input) and P2 (output), (c) Pyrocam III measurement of the output beam profile at a power level just below damage.

Fig. 9
Fig. 9

Measurement of fiber tensile strength. Inset is a photo of the ChG fragments that form within the stretching PEI jacket.

Tables (1)

Tables Icon

Table 1 Fiber Transmission Measurement

Metrics