Abstract

The strong quantum confinement effect in lead selenide (PbSe) colloidal quantum dots (CQDs) allows to tune the bandgap of the material, covering a large spectral range from mid- to near infrared (NIR). Together with the advantages of low-cost solution processability, flexibility and easy scale-up production in comparison to conventional semiconductors especially in the mid- to near infrared range, PbSe CQDs have been a promising material for infrared optoelectronic applications. In this study, we synthesized monodisperse and high purity PbSe CQDs and then demonstrated the photodetectors working at different wavelengths up to 2.8 µm. Our high quality PbSe CQDs show clear multiple excitonic absorption peaks. PbSe CQD films of different thicknesses were deposited on interdigitated platinum electrodes by a simple drop casting technique to make the infrared photodetectors. At room temperature, the high performances of our PbSe CQD photodetectors were achieved with maximum responsivity, detectivity and external quantum efficiency of 0.96 A/W, 8.13 × 109 Jones and 78% at 5V bias. Furthermore, a series of infrared LEDs with a broad wavelength range from 1.5 μm to 3.4 μm was utilized to demonstrate the performance of our fabricated photodetectors with various PbSe CQD film thicknesses.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

21 July 2017: A typographical correction was made to the funding section.


OSA Recommended Articles
Carbon nanotube arrays based high-performance infrared photodetector [Invited]

Qingsheng Zeng, Sheng Wang, Leijing Yang, Zhenxing Wang, Tian Pei, Zhiyong Zhang, Lian-Mao Peng, Weiwei Zhou, Jie Liu, Weiya Zhou, and Sishen Xie
Opt. Mater. Express 2(6) 839-848 (2012)

Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED

Ranojoy Bose, Jie Gao, James F. McMillan, Alex D. Williams, and Chee Wei Wong
Opt. Express 17(25) 22474-22483 (2009)

Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells

Yulan Fu, Abay G. Dinku, Yukihiro Hara, Christopher W. Miller, Kristina T. Vrouwenvelder, and Rene Lopez
Opt. Express 23(15) A779-A790 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
    [Crossref] [PubMed]
  2. A. Teitelboim, N. Meir, M. Kazes, and D. Oron, “Colloidal double quantum dots,” Acc. Chem. Res. 49(5), 902–910 (2016).
    [Crossref] [PubMed]
  3. X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
    [Crossref]
  4. Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
    [Crossref] [PubMed]
  5. X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
    [Crossref]
  6. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
    [Crossref] [PubMed]
  7. L. E. Bru, “Electron-electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
    [Crossref]
  8. A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
    [Crossref] [PubMed]
  9. G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
    [Crossref]
  10. R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
    [Crossref]
  11. J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
    [Crossref] [PubMed]
  12. S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
    [Crossref] [PubMed]
  13. Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
    [Crossref]
  14. C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
    [Crossref]
  15. A. Rogalski, Infrared Detectors (CRC Press, 2010).
  16. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
    [Crossref] [PubMed]
  17. L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
    [Crossref]
  18. J. Saghaei, A. Fallahzadeh, and T. Saghaei, “Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods,” Sens. Actuators A Phys. 247, 150–155 (2016).
    [Crossref]
  19. S. Keuleyan, J. Kohler, and P. Guyot-Sionnest, “Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots,” J. Phys. Chem. C 118(5), 2749–2753 (2014).
    [Crossref]
  20. X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).
  21. G. Wei, Z. Lu, Y. Cai, and C. Sui, “CuPc/C60 heterojunction photodetector with near-infrared spectral response,” Mater. Lett. 201, 137–139 (2017).
    [Crossref]
  22. X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
    [Crossref]
  23. H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
    [Crossref]
  24. X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
    [Crossref] [PubMed]
  25. J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
    [Crossref] [PubMed]
  26. L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
    [Crossref]
  27. U. Nithiyanantham, M. F. Ozaydin, A. S. Tazebay, and S. Kundu, “Low temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties,” New J. Chem. 40(1), 265–277 (2016).
    [Crossref]
  28. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
    [Crossref] [PubMed]
  29. J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc. 128(10), 3248–3255 (2006).
    [Crossref] [PubMed]
  30. B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
    [Crossref]
  31. Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
    [Crossref]
  32. Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
    [Crossref]
  33. K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
    [Crossref] [PubMed]
  34. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [Crossref] [PubMed]
  35. E. J. D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing,” Proc. SPIE 9451, 945104 (2015).
    [Crossref]
  36. H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
    [Crossref] [PubMed]
  37. L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
    [Crossref]
  38. M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
    [Crossref]
  39. L. Etgar, E. Lifshitz, and R. Tannenbaum, “Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications,” J. Phys. Chem. C 111(17), 6238–6244 (2007).
    [Crossref]
  40. H. E. Romero, and M. Drndic, “Coulomb blockade and hopping conduction in PbSe quantum dots,” Phys. Rev. Lett. 95, 156801 (2005).
    [Crossref]
  41. Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
    [Crossref]
  42. G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
    [Crossref]
  43. M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
    [Crossref]
  44. D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
    [Crossref]
  45. A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
    [Crossref]
  46. D. Yu, C. Wang, and P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science 300(5623), 1277–1280 (2003).
    [Crossref] [PubMed]
  47. D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
    [Crossref]
  48. Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
    [Crossref]
  49. S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale 8(12), 6410–6434 (2016).
    [Crossref] [PubMed]
  50. D. Zare-Hossein-abadi, A. Ershad-Langroudi, A. Rahimi, and S. Afsar, “Photo-generated activities of nanocrystalline TiO2 thin films,” J. Inorg. Organomet. Polym. Mater. 20(2), 250–257 (2010).
    [Crossref]
  51. A. K. Seferlis and S. G. Neophytides, “Photoelectrocatalytic electricity and/or H2 production from alcohols: the effect of TiO2 film Thickness,” J. Electrochem. Soc. 158(2), H183–H189 (2011).
    [Crossref]
  52. W. Y. Zhang, S. Zhong, L. J. Sun, and Z. X. Fu, “Dependence of photovoltaic property of ZnO/Si heterojunction solar cell on thickness of ZnO films,” Chin. Phys. Lett. 25(5), 1829–1831 (2008).
    [Crossref]
  53. N. Naseri, S. Yousefzadeh, E. Daryaei, and A. Z. Moshfegh, “Photoresponse and H2 production of topographically controlled PEG assisted sol–gel WO3 nanocrystalline thin films,” Int. J. Hydrogen Energy 36(21), 13461–13472 (2011).
    [Crossref]
  54. J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
    [Crossref]
  55. R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
    [Crossref]
  56. J. D. Vincent, S. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (John Wiley & Sons, 2015).

2017 (4)

G. Wei, Z. Lu, Y. Cai, and C. Sui, “CuPc/C60 heterojunction photodetector with near-infrared spectral response,” Mater. Lett. 201, 137–139 (2017).
[Crossref]

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

2016 (10)

S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale 8(12), 6410–6434 (2016).
[Crossref] [PubMed]

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

U. Nithiyanantham, M. F. Ozaydin, A. S. Tazebay, and S. Kundu, “Low temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties,” New J. Chem. 40(1), 265–277 (2016).
[Crossref]

A. Teitelboim, N. Meir, M. Kazes, and D. Oron, “Colloidal double quantum dots,” Acc. Chem. Res. 49(5), 902–910 (2016).
[Crossref] [PubMed]

J. Saghaei, A. Fallahzadeh, and T. Saghaei, “Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods,” Sens. Actuators A Phys. 247, 150–155 (2016).
[Crossref]

2015 (10)

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

E. J. D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing,” Proc. SPIE 9451, 945104 (2015).
[Crossref]

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

2014 (5)

M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
[Crossref]

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

S. Keuleyan, J. Kohler, and P. Guyot-Sionnest, “Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots,” J. Phys. Chem. C 118(5), 2749–2753 (2014).
[Crossref]

S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
[Crossref] [PubMed]

R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
[Crossref]

2013 (3)

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

2012 (4)

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

2011 (4)

N. Naseri, S. Yousefzadeh, E. Daryaei, and A. Z. Moshfegh, “Photoresponse and H2 production of topographically controlled PEG assisted sol–gel WO3 nanocrystalline thin films,” Int. J. Hydrogen Energy 36(21), 13461–13472 (2011).
[Crossref]

A. K. Seferlis and S. G. Neophytides, “Photoelectrocatalytic electricity and/or H2 production from alcohols: the effect of TiO2 film Thickness,” J. Electrochem. Soc. 158(2), H183–H189 (2011).
[Crossref]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

2010 (4)

D. Zare-Hossein-abadi, A. Ershad-Langroudi, A. Rahimi, and S. Afsar, “Photo-generated activities of nanocrystalline TiO2 thin films,” J. Inorg. Organomet. Polym. Mater. 20(2), 250–257 (2010).
[Crossref]

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

2009 (1)

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

2008 (1)

W. Y. Zhang, S. Zhong, L. J. Sun, and Z. X. Fu, “Dependence of photovoltaic property of ZnO/Si heterojunction solar cell on thickness of ZnO films,” Chin. Phys. Lett. 25(5), 1829–1831 (2008).
[Crossref]

2007 (1)

L. Etgar, E. Lifshitz, and R. Tannenbaum, “Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications,” J. Phys. Chem. C 111(17), 6238–6244 (2007).
[Crossref]

2006 (2)

J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc. 128(10), 3248–3255 (2006).
[Crossref] [PubMed]

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

2005 (1)

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

2003 (2)

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

D. Yu, C. Wang, and P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science 300(5623), 1277–1280 (2003).
[Crossref] [PubMed]

1984 (1)

L. E. Bru, “Electron-electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

Aaron, D.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Adamo, G.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Afsar, S.

D. Zare-Hossein-abadi, A. Ershad-Langroudi, A. Rahimi, and S. Afsar, “Photo-generated activities of nanocrystalline TiO2 thin films,” J. Inorg. Organomet. Polym. Mater. 20(2), 250–257 (2010).
[Crossref]

Ahrenkiel, S. P.

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Akgul, M. Z.

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

Artemyev, M.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Atwater, H. A.

R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
[Crossref]

Bai, H.

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

Bai, J.

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Bai, T.

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Bao, Q.

S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale 8(12), 6410–6434 (2016).
[Crossref] [PubMed]

Baranov, A. V.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Barkhouse, R.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Beard, M. C.

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Biswas, K.

M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
[Crossref]

Bo, H.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Boschloo, G.

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

Bru, L. E.

L. E. Bru, “Electron-electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

Brzozowski, L.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Budniak, A. K.

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

Bukhtiar, A.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Cai, W.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Cai, Y.

G. Wei, Z. Lu, Y. Cai, and C. Sui, “CuPc/C60 heterojunction photodetector with near-infrared spectral response,” Mater. Lett. 201, 137–139 (2017).
[Crossref]

Cao, Y.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Capek, R. K.

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Chen, H.-Y.

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

Chen, P.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Chen, X.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

Choi, H.

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

Choi, S.

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

Choudhury, K. R.

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

Conibeer, G.

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Couteau, C.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Dai, X.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Dang, C.

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Daryaei, E.

N. Naseri, S. Yousefzadeh, E. Daryaei, and A. Z. Moshfegh, “Photoresponse and H2 production of topographically controlled PEG assisted sol–gel WO3 nanocrystalline thin films,” Int. J. Hydrogen Energy 36(21), 13461–13472 (2011).
[Crossref]

Debnath, R.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Demir, H. V.

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Deng, H.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Dhanabalan, S. C.

S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale 8(12), 6410–6434 (2016).
[Crossref] [PubMed]

Dong, D.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Dong, Z.

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

Ellingson, R. J.

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Erdem, T.

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

Ershad-Langroudi, A.

D. Zare-Hossein-abadi, A. Ershad-Langroudi, A. Rahimi, and S. Afsar, “Photo-generated activities of nanocrystalline TiO2 thin films,” J. Inorg. Organomet. Polym. Mater. 20(2), 250–257 (2010).
[Crossref]

Etgar, L.

L. Etgar, E. Lifshitz, and R. Tannenbaum, “Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications,” J. Phys. Chem. C 111(17), 6238–6244 (2007).
[Crossref]

Fallahzadeh, A.

J. Saghaei, A. Fallahzadeh, and T. Saghaei, “Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods,” Sens. Actuators A Phys. 247, 150–155 (2016).
[Crossref]

Fan, C.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Fan, P.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Fedorov, A. V.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Fei, G. T.

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Feng, S.

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Feng, Y.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Fredin, K.

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

Fu, C.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Fu, X.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

Fu, Z. X.

W. Y. Zhang, S. Zhong, L. J. Sun, and Z. X. Fu, “Dependence of photovoltaic property of ZnO/Si heterojunction solar cell on thickness of ZnO films,” Chin. Phys. Lett. 25(5), 1829–1831 (2008).
[Crossref]

Fua, W. B.

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Gan, L.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

Gao, J.

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

Gao, X. D.

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Gaponik, N.

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

Gong, X.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Gong, X. X.

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Gregory, C.

E. J. D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing,” Proc. SPIE 9451, 945104 (2015).
[Crossref]

Grumbach, N.

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Guo, N.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Guo, W.

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

Guyot-Sionnest, P.

S. Keuleyan, J. Kohler, and P. Guyot-Sionnest, “Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots,” J. Phys. Chem. C 118(5), 2749–2753 (2014).
[Crossref]

D. Yu, C. Wang, and P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science 300(5623), 1277–1280 (2003).
[Crossref] [PubMed]

Hagfeldt, A.

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

Haggman, L.

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

Han, J.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

He, A.

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

Heeger, A. J.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Heo, S. J.

S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
[Crossref] [PubMed]

Hernandez-Martinez, P. L.

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Ho, J. C.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Hoogland, S.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Horani, F.

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

Hu, H.

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Hu, L.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Hu, W.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Huang, S.

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Huang, Y.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Huang, Z.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

Jana, M. K.

M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
[Crossref]

Jang, J.

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

Jang, Y.

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

Jeong, S.

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

Jiang, T.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Johnson, J. C.

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Kauffmann, Y.

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

Kazes, M.

A. Teitelboim, N. Meir, M. Kazes, and D. Oron, “Colloidal double quantum dots,” Acc. Chem. Res. 49(5), 902–910 (2016).
[Crossref] [PubMed]

Keuleyan, S.

S. Keuleyan, J. Kohler, and P. Guyot-Sionnest, “Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots,” J. Phys. Chem. C 118(5), 2749–2753 (2014).
[Crossref]

Kim, H. J.

S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
[Crossref] [PubMed]

Kim, S.

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

Klem, E. J. D.

E. J. D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing,” Proc. SPIE 9451, 945104 (2015).
[Crossref]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Klimov, V. I.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Kohler, J.

S. Keuleyan, J. Kohler, and P. Guyot-Sionnest, “Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots,” J. Phys. Chem. C 118(5), 2749–2753 (2014).
[Crossref]

Koleilat, G. I.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Konstantatos, G.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Kramer, I. J.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Krupanidhi, S. B.

M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
[Crossref]

Kundu, S.

U. Nithiyanantham, M. F. Ozaydin, A. S. Tazebay, and S. Kundu, “Low temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties,” New J. Chem. 40(1), 265–277 (2016).
[Crossref]

Leenheer, A. J.

R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
[Crossref]

Levina, L.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Lewis, J.

E. J. D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing,” Proc. SPIE 9451, 945104 (2015).
[Crossref]

Lewis, N. S.

R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
[Crossref]

Li, C.

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Li, F.

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Li, H.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

Li, M.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

Lian, L.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

Liang, F. X.

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Liang, F.-X.

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Liao, L.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Lichterman, M.

R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
[Crossref]

Lifshitz, E.

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

L. Etgar, E. Lifshitz, and R. Tannenbaum, “Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications,” J. Phys. Chem. C 111(17), 6238–6244 (2007).
[Crossref]

Lin, Z.

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Litvin, A. P.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Liu, B.

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

Liu, H.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Liu, X.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Lombardi, J. R.

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

Lu, R.

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Lu, W.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Lu, Z.

G. Wei, Z. Lu, Y. Cai, and C. Sui, “CuPc/C60 heterojunction photodetector with near-infrared spectral response,” Mater. Lett. 201, 137–139 (2017).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Luo, L. B.

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Luther, J. M.

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

Ma, L.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Mai, X. D.

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

Maikov, G. I.

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Meir, N.

A. Teitelboim, N. Meir, M. Kazes, and D. Oron, “Colloidal double quantum dots,” Acc. Chem. Res. 49(5), 902–910 (2016).
[Crossref] [PubMed]

Miao, J.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Miao, X.

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Micic, O. I.

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Moon, J. S.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Moshfegh, A. Z.

N. Naseri, S. Yousefzadeh, E. Daryaei, and A. Z. Moshfegh, “Photoresponse and H2 production of topographically controlled PEG assisted sol–gel WO3 nanocrystalline thin films,” Int. J. Hydrogen Energy 36(21), 13461–13472 (2011).
[Crossref]

Murali, B.

M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
[Crossref]

Murphy, J. E.

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Murray, C. B.

J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc. 128(10), 3248–3255 (2006).
[Crossref] [PubMed]

Mutlugun, E.

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Naseri, N.

N. Naseri, S. Yousefzadeh, E. Daryaei, and A. Z. Moshfegh, “Photoresponse and H2 production of topographically controlled PEG assisted sol–gel WO3 nanocrystalline thin films,” Int. J. Hydrogen Energy 36(21), 13461–13472 (2011).
[Crossref]

Neophytides, S. G.

A. K. Seferlis and S. G. Neophytides, “Photoelectrocatalytic electricity and/or H2 production from alcohols: the effect of TiO2 film Thickness,” J. Electrochem. Soc. 158(2), H183–H189 (2011).
[Crossref]

Nilsson, B.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Ning, J.

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

Nissfolk, J.

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

Nithiyanantham, U.

U. Nithiyanantham, M. F. Ozaydin, A. S. Tazebay, and S. Kundu, “Low temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties,” New J. Chem. 40(1), 265–277 (2016).
[Crossref]

Norman, A. G.

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Nozik, A. J.

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Oh, S. H.

S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
[Crossref] [PubMed]

Oron, D.

A. Teitelboim, N. Meir, M. Kazes, and D. Oron, “Colloidal double quantum dots,” Acc. Chem. Res. 49(5), 902–910 (2016).
[Crossref] [PubMed]

Ozaydin, M. F.

U. Nithiyanantham, M. F. Ozaydin, A. S. Tazebay, and S. Kundu, “Low temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties,” New J. Chem. 40(1), 265–277 (2016).
[Crossref]

Pala, R. A.

R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
[Crossref]

Pan, A.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Pan, L.

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

Pan, Y.

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

Parfenov, P. S.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Patterson, R.

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Petruska, M. A.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Ponraj, J. S.

S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale 8(12), 6410–6434 (2016).
[Crossref] [PubMed]

Prudnikau, A. V.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Qiao, K.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Rahimi, A.

D. Zare-Hossein-abadi, A. Ershad-Langroudi, A. Rahimi, and S. Afsar, “Photo-generated activities of nanocrystalline TiO2 thin films,” J. Inorg. Organomet. Polym. Mater. 20(2), 250–257 (2010).
[Crossref]

Rao, C. N. R.

M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
[Crossref]

Ren, Z.

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Rubin-Brusilovski, A.

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Rukhlenko, I. D.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Saghaei, J.

J. Saghaei, A. Fallahzadeh, and T. Saghaei, “Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods,” Sens. Actuators A Phys. 247, 150–155 (2016).
[Crossref]

Saghaei, T.

J. Saghaei, A. Fallahzadeh, and T. Saghaei, “Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods,” Sens. Actuators A Phys. 247, 150–155 (2016).
[Crossref]

Sarasqueta, G.

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

Sargent, E. H.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Sashchiuk, A.

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Schaller, R. D.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Seferlis, A. K.

A. K. Seferlis and S. G. Neophytides, “Photoelectrocatalytic electricity and/or H2 production from alcohols: the effect of TiO2 film Thickness,” J. Electrochem. Soc. 158(2), H183–H189 (2011).
[Crossref]

Semonin, O. E.

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

Shapiro, A.

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

Shen, X.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Shevchenko, E. V.

J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc. 128(10), 3248–3255 (2006).
[Crossref] [PubMed]

Shi, Y.

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Shi, Z.

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Shieh, C. L.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Shrestha, S.

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Simiyu, J.

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

So, F.

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

Soci, C.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Sohel, M.

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

Solomeshch, O.

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Song, H.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Song, J. H.

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

Song, T.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Song, X.

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Soran-Erdem, Z.

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

Sui, C.

G. Wei, Z. Lu, Y. Cai, and C. Sui, “CuPc/C60 heterojunction photodetector with near-infrared spectral response,” Mater. Lett. 201, 137–139 (2017).
[Crossref]

Sulaman, M.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Sun, J.-L.

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

Sun, L. J.

W. Y. Zhang, S. Zhong, L. J. Sun, and Z. X. Fu, “Dependence of photovoltaic property of ZnO/Si heterojunction solar cell on thickness of ZnO films,” Chin. Phys. Lett. 25(5), 1829–1831 (2008).
[Crossref]

Sun, X. W.

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Talapin, D. V.

J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc. 128(10), 3248–3255 (2006).
[Crossref] [PubMed]

Tamargo, M. C.

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

Tan, H.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Tang, J.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Tang, Y.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Tannenbaum, R.

L. Etgar, E. Lifshitz, and R. Tannenbaum, “Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications,” J. Phys. Chem. C 111(17), 6238–6244 (2007).
[Crossref]

Tazebay, A. S.

U. Nithiyanantham, M. F. Ozaydin, A. S. Tazebay, and S. Kundu, “Low temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties,” New J. Chem. 40(1), 265–277 (2016).
[Crossref]

Teitelboim, A.

A. Teitelboim, N. Meir, M. Kazes, and D. Oron, “Colloidal double quantum dots,” Acc. Chem. Res. 49(5), 902–910 (2016).
[Crossref] [PubMed]

Temple, D.

E. J. D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing,” Proc. SPIE 9451, 945104 (2015).
[Crossref]

Tilchin, J.

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

Tong, M.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Urban, J. J.

J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc. 128(10), 3248–3255 (2006).
[Crossref] [PubMed]

Ushakova, E. V.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Vaxenburg, R.

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Wang, B.

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Wang, C.

D. Yu, C. Wang, and P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science 300(5623), 1277–1280 (2003).
[Crossref] [PubMed]

Wang, H.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Wang, L.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Wang, M.

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Wang, P.

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

Wang, X.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

Wang, X. H.

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Wang, X.-H.

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Wang, Y.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Wang, Z.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Wei, G.

G. Wei, Z. Lu, Y. Cai, and C. Sui, “CuPc/C60 heterojunction photodetector with near-infrared spectral response,” Mater. Lett. 201, 137–139 (2017).
[Crossref]

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

Wei, J.

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

Wei, Y.

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

Wu, S.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Wu, X.

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Xia, H.

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Xia, Y.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Xiao, G.

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

Xiong, X.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

Yan, L.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Yang, J.

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Yang, S.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Yang, X.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Yang, Y.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Yang, Z.

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Yanover, D.

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

Yin, J.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Yoon, D. H.

S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
[Crossref] [PubMed]

Yoon, S.

S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
[Crossref] [PubMed]

Yousefzadeh, S.

N. Naseri, S. Yousefzadeh, E. Daryaei, and A. Z. Moshfegh, “Photoresponse and H2 production of topographically controlled PEG assisted sol–gel WO3 nanocrystalline thin films,” Int. J. Hydrogen Energy 36(21), 13461–13472 (2011).
[Crossref]

Yu, D.

D. Yu, C. Wang, and P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science 300(5623), 1277–1280 (2003).
[Crossref] [PubMed]

Yu, G.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Yu, P.

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

Yu, W. W.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

Yu, Y. Q.

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Yu, Y.-Q.

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Yuan, L.

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Zaiats, G.

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

Zare-Hossein-abadi, D.

D. Zare-Hossein-abadi, A. Ershad-Langroudi, A. Rahimi, and S. Afsar, “Photo-generated activities of nanocrystalline TiO2 thin films,” J. Inorg. Organomet. Polym. Mater. 20(2), 250–257 (2010).
[Crossref]

Zhai, G.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Zhai, T.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

Zhang, C.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

Zhang, D.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Zhang, G.

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

Zhang, H.

S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale 8(12), 6410–6434 (2016).
[Crossref] [PubMed]

Zhang, J.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Zhang, K.

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Zhang, L. D.

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Zhang, Q.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

Zhang, S.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Zhang, T.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Zhang, W. Y.

W. Y. Zhang, S. Zhong, L. J. Sun, and Z. X. Fu, “Dependence of photovoltaic property of ZnO/Si heterojunction solar cell on thickness of ZnO films,” Chin. Phys. Lett. 25(5), 1829–1831 (2008).
[Crossref]

Zhang, X.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Zhang, Y.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Zhang, Z.

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Zhao, J.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Zhong, S.

W. Y. Zhang, S. Zhong, L. J. Sun, and Z. X. Fu, “Dependence of photovoltaic property of ZnO/Si heterojunction solar cell on thickness of ZnO films,” Chin. Phys. Lett. 25(5), 1829–1831 (2008).
[Crossref]

Zhong, Z.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

Zhonga, B. N.

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Zhou, H.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Zhou, X.

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

Zhu, J.-L.

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

Zhu, S.

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Zhu, X.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Zhuang, X.

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Zou, B.

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

Zou, G.

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

Zou, Y. F.

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

Acc. Chem. Res. (1)

A. Teitelboim, N. Meir, M. Kazes, and D. Oron, “Colloidal double quantum dots,” Acc. Chem. Res. 49(5), 902–910 (2016).
[Crossref] [PubMed]

ACS Nano (1)

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Adv. Optical Mater. (1)

X. Yang, P. L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H. V. Demir, and X. W. Sun, “Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer,” Adv. Optical Mater. 3(10), 1439–1445 (2015).
[Crossref]

Appl. Surf. Sci. (1)

X. X. Gong, G. T. Fei, W. B. Fua, B. N. Zhonga, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci. 404, 7–11 (2017).
[Crossref]

Chem. Mater. (3)

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

D. Yanover, R. K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G. I. Maikov, O. Solomeshch, A. Sashchiuk, and E. Lifshitz, “Small-sized PbSe/PbS core/shell colloidal quantum dots,” Chem. Mater. 24(22), 4417–4423 (2012).
[Crossref]

A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, and E. Lifshitz, “Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime,” Chem. Mater. 28(17), 6409–6416 (2016).
[Crossref]

Chin. Phys. Lett. (1)

W. Y. Zhang, S. Zhong, L. J. Sun, and Z. X. Fu, “Dependence of photovoltaic property of ZnO/Si heterojunction solar cell on thickness of ZnO films,” Chin. Phys. Lett. 25(5), 1829–1831 (2008).
[Crossref]

CrystEngComm (3)

D. Zhang, G. Zhai, J. Zhang, L. Yuan, X. Miao, S. Zhu, and Y. Wang, “Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes,” CrystEngComm 12(10), 3243–3248 (2010).
[Crossref]

Z. Huang, G. Zhai, Z. Zhang, C. Zhang, Y. Xia, L. Lian, X. Fu, D. Zhang, and J. Zhang, “Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation,” CrystEngComm 19(6), 946–951 (2017).
[Crossref]

C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, and S. Feng, “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 15(3), 597–603 (2013).
[Crossref]

Energy Environ. Sci. (1)

R. A. Pala, A. J. Leenheer, M. Lichterman, H. A. Atwater, and N. S. Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrode,” Energy Environ. Sci. 7(10), 3424–3430 (2014).
[Crossref]

Int. J. Hydrogen Energy (1)

N. Naseri, S. Yousefzadeh, E. Daryaei, and A. Z. Moshfegh, “Photoresponse and H2 production of topographically controlled PEG assisted sol–gel WO3 nanocrystalline thin films,” Int. J. Hydrogen Energy 36(21), 13461–13472 (2011).
[Crossref]

J. Am. Chem. Soc. (2)

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006).
[Crossref] [PubMed]

J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc. 128(10), 3248–3255 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (1)

L. E. Bru, “Electron-electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

J. Electroanal. Chem. (1)

J. Nissfolk, K. Fredin, J. Simiyu, L. Haggman, A. Hagfeldt, and G. Boschloo, “Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study,” J. Electroanal. Chem. 646(1-2), 91–99 (2010).
[Crossref]

J. Electrochem. Soc. (1)

A. K. Seferlis and S. G. Neophytides, “Photoelectrocatalytic electricity and/or H2 production from alcohols: the effect of TiO2 film Thickness,” J. Electrochem. Soc. 158(2), H183–H189 (2011).
[Crossref]

J. Inorg. Organomet. Polym. Mater. (1)

D. Zare-Hossein-abadi, A. Ershad-Langroudi, A. Rahimi, and S. Afsar, “Photo-generated activities of nanocrystalline TiO2 thin films,” J. Inorg. Organomet. Polym. Mater. 20(2), 250–257 (2010).
[Crossref]

J. Mater. Chem. (2)

Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, and J. Bai, “The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films,” J. Mater. Chem. 22(39), 21009–21016 (2012).
[Crossref]

Y. Pan, H. Bai, L. Pan, Y. Li, M. C. Tamargo, M. Sohel, and J. R. Lombardi, “Size controlled synthesis of monodisperse PbTe quantum dots: using oleylamine as the capping ligand,” J. Mater. Chem. 22(44), 23593–23601 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

L. B. Luo, H. Hu, X.-H. Wang, R. Lu, Y. F. Zou, Y.-Q. Yu, and F.-X. Liang, “A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, and F. X. Liang, “graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(18), 4723–4728 (2015).
[Crossref]

M. K. Jana, B. Murali, S. B. Krupanidhi, K. Biswas, and C. N. R. Rao, “Fabrication of large-area PbSe films at the organic– aqueous interface and their near-infrared photoresponse,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6283–6289 (2014).
[Crossref]

J. Phys. Chem. B (1)

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

J. Phys. Chem. C (2)

S. Keuleyan, J. Kohler, and P. Guyot-Sionnest, “Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots,” J. Phys. Chem. C 118(5), 2749–2753 (2014).
[Crossref]

L. Etgar, E. Lifshitz, and R. Tannenbaum, “Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications,” J. Phys. Chem. C 111(17), 6238–6244 (2007).
[Crossref]

J. Phys. Chem. Lett. (2)

G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, “Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots,” J. Phys. Chem. Lett. 6(13), 2444–2448 (2015).
[Crossref] [PubMed]

Z. Soran-Erdem, T. Erdem, P. L. Hernandez-Martinez, M. Z. Akgul, N. Gaponik, and H. V. Demir, “Macrocrystals of colloidal quantum dots in anthracene: exciton transfer and polarized emission,” J. Phys. Chem. Lett. 6(9), 1767–1772 (2015).
[Crossref] [PubMed]

Mater. Lett. (1)

G. Wei, Z. Lu, Y. Cai, and C. Sui, “CuPc/C60 heterojunction photodetector with near-infrared spectral response,” Mater. Lett. 201, 137–139 (2017).
[Crossref]

Nano Lett. (1)

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Nano-Micro Lett. (1)

H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, and A. Pan, “Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors,” Nano-Micro Lett. 8(1), 29–35 (2016).
[Crossref]

Nanoscale (5)

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim, and S. Jeong, “High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control,” Nanoscale 7(41), 17473–17481 (2015).
[Crossref] [PubMed]

A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski, G. I. Maikov, R. K. Čapek, R. Vaxenburg, J. Tilchin, G. Zaiats, and E. Lifshitz, “Tuning of electronic properties in IV-VI colloidal nanostructures by alloy composition and architecture,” Nanoscale 5(17), 7724–7745 (2013).
[Crossref] [PubMed]

S. J. Heo, S. Yoon, S. H. Oh, D. H. Yoon, and H. J. Kim, “Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids,” Nanoscale 6(2), 903–907 (2014).
[Crossref] [PubMed]

S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale 8(12), 6410–6434 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. Aaron, R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics 5(8), 480–484 (2011).
[Crossref]

New J. Chem. (1)

U. Nithiyanantham, M. F. Ozaydin, A. S. Tazebay, and S. Kundu, “Low temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties,” New J. Chem. 40(1), 265–277 (2016).
[Crossref]

Physica B (1)

Y. Chen, G. Zhang, Z. Dong, J. Wei, J.-L. Zhu, and J.-L. Sun, “Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors,” Physica B 508, 1–6 (2017).
[Crossref]

Proc. SPIE (1)

E. J. D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing,” Proc. SPIE 9451, 945104 (2015).
[Crossref]

RSC Advances (6)

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

B. Wang, H. Xia, Z. Zhang, J. Yang, R. Patterson, S. Huang, S. Shrestha, and G. Conibeer, “Ab initio calculation of halide ligand passivation on PbSe quantum dot facets,” RSC Advances 6(106), 104699 (2016).
[Crossref]

Z. Lin, Z. Yang, P. Wang, G. Wei, A. He, W. Guo, and M. Wang, “Schottky–ohmic converted contact, fast-response, infrared PbTe photodetector with stable photoresponse in air,” RSC Advances 6(109), 107878 (2016).
[Crossref]

X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, “High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition,” RSC Advances 5, 54109–54114 (2015).

G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. W. Yu, G. Zou, and B. Zou, “Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism and applications,” RSC Advances 3(22), 8104–8130 (2013).
[Crossref]

M. Sulaman, S. Yang, A. Bukhtiar, C. Fu, T. Song, H. Wang, Y. Wang, H. Bo, Y. Tang, and B. Zou, “High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(Nvinylcarbazole),” RSC Advances 6(50), 44514–44521 (2016).
[Crossref]

Science (3)

D. Yu, C. Wang, and P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science 300(5623), 1277–1280 (2003).
[Crossref] [PubMed]

O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science 334(6062), 1530–1533 (2011).
[Crossref] [PubMed]

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

J. Saghaei, A. Fallahzadeh, and T. Saghaei, “Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods,” Sens. Actuators A Phys. 247, 150–155 (2016).
[Crossref]

Small (1)

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Other (3)

A. Rogalski, Infrared Detectors (CRC Press, 2010).

H. E. Romero, and M. Drndic, “Coulomb blockade and hopping conduction in PbSe quantum dots,” Phys. Rev. Lett. 95, 156801 (2005).
[Crossref]

J. D. Vincent, S. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (John Wiley & Sons, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Characterization of PbSe CQDs. (a) The TEM image of PbSe CQDs shows the monodisperse nanoparticles. (b) Histogram of the PbSe nanoparticle size distribution. (c) The HRTEM of PbSe nanoparticles. (d) The x-ray diffraction pattern of PbSe nanoparticles.
Fig. 2
Fig. 2 (a) Absorbance spectra of PbSe CQD film measured by single wavelength scanning spectrometer (black color) and FTIR (blue color). (b) Absorbance spectrum of PbSe CQD solution
Fig. 3
Fig. 3 (a) The schematic diagram of PbSe CQD photodetectors. (b) The current-voltage (I-V) characteristics of PbSe CQD photodetector device under ambient conditions in the dark and light illumination (1.52 µm). (c) The responsibility and EQE of our photodetector devices with different film thickness. (d) The detectivity as a function of bias voltage for our three devices.
Fig. 4
Fig. 4 Photocurrent-voltage characteristics of photodetectors under various LED illuminations with wavelength from 1.5 µm to 2.8 µm for PbSe CQD thickness of (a) 500 nm, (b) 900 nm and (c) 1400 nm. (d) The photocurrent of our three devices as a function of LED wavelength at the bias voltage of 10V.

Metrics