Abstract

In the present research, a new class of bromine-containing photo-thermo-refractive (PTR) glass in which the UV irradiation and subsequent heat treatment cause the precipitation of silver nanoparticles with a shell consisting of silver bromides is developed and studied. The growth of AgBr nanocrystals is shown to lead to a local positive refractive index change (refractive index of crystallized glassy area is higher than one of non-crystalline) in the UV-irradiated area against the unirradiated area up to 800 ppm. Based on this effect, samples of a volume Bragg grating and a waveguide structure have been recorded.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

12 June 2017: Typographical corrections were made to the display equations in Section 3.


OSA Recommended Articles
Chloride photo-thermo-refractive glasses

Victor D. Dubrovin, Alexander I. Ignatiev, and Nikolay V. Nikonorov
Opt. Mater. Express 6(5) 1701-1713 (2016)

Photostructurable photo-thermo-refractive glass

Y. Sgibnev, N. Nikonorov, A. Ignatiev, V. Vasilyev, and M. Sorokina
Opt. Express 24(5) 4563-4572 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
    [Crossref]
  2. S. A. Ivanov, A. E. Angervaks, and A. S. Shcheulin, “Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights,” Proc. SPIE 9131, 91311B (2014).
  3. L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002).
    [Crossref]
  4. S. A. Ivanov and V. A. Aseev, “Resonator free Er-Yb laser based on photo-thermo-refractive (PTR) glass,” Proc. SPIE 8959, 89591E (2014).
  5. L. B. Glebov, “Photosensitive holographic glass – new approach to creation of high power lasers,” Phys. Chem. Glas. J. Glas. Sci. Technol. Part B 48(3), 123–128 (2007).
  6. A. I. Ignatiev, D. A. Klyukin, V. S. Leontieva, N. V. Nikonorov, T. A. Shakhverdov, and A. I. Sidorov, “Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses,” Opt. Mater. Express 5(7), 1635 (2015).
    [Crossref]
  7. Y. Sgibnev, N. Nikonorov, A. Ignatiev, V. Vasilyev, and M. Sorokina, “Photostructurable photo-thermo-refractive glass,” Opt. Express 24(5), 4563 (2016).
    [Crossref]
  8. Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, “Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method,” 33(17), 3730–3735 (2015).
  9. N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, “Influence of glass composition on the refractive index change upon photothermoinduced crystallization,” Glass Phys. Chem. 27(3), 241–249 (2001).
    [Crossref]
  10. L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
    [Crossref]
  11. S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49(10), 5114–5123 (1978).
    [Crossref]
  12. V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
    [Crossref]
  13. I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
    [Crossref]
  14. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).
  15. J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008).
    [Crossref]
  16. J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” Int. Mater. Rev. 6608(December), 1–19 (2016).
    [Crossref]
  17. V. D. Dubrovin, A. I. Ignatiev, and N. V. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6(5), 1701 (2016).
    [Crossref]
  18. N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Silver Nanoparticles in Oxide Glasses: Technologies and Properties,” in Silver Nanoparticles, D. P. Perez, ed. (In-Tech, 2010), p.177.
  19. S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Optical properties of silver ion-exchanged antimony doped glass,” J. Non-Cryst. Solids 278(1–3), 128–136 (2000).
    [Crossref]
  20. A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361(1), 26–37 (2013).
    [Crossref]
  21. A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices,” J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011).
    [Crossref]
  22. O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
    [Crossref]
  23. I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
    [Crossref]
  24. S. A. Nikonorov, V. Aseev, A. Ignatiev, E. Kolobkova, “Novel glasses and nanoglassceramics for photonic and plasmonic applications,” in Thirteenth International Conference on the Physics of Non-Crystalline Solids, 89.
  25. S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122(14), 144701 (2005).
    [Crossref] [PubMed]
  26. N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiĭ, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
    [Crossref]
  27. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
    [Crossref] [PubMed]
  28. G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466–4473 (1975).
    [Crossref]
  29. A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices,” 134(45), 18824–18833 (2012).
  30. S. Tutihasi, “Optical Absorption by Silver Halides,” Phys. Rev. 105(3), 882–884 (1957).
    [Crossref]
  31. V. H. Sehr, “Über die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln für den Dispersionsverlauf,” Z. Phys. 67(1), 24–36 (1931).
  32. C. Sinistri, R. Riccardu, C. Margheritis, and P. Tittarelli, “Thermodynamic Properties of Solid Systems AgCl + NaCl and AgBr + NaBr from Miscibility Gap Measurements,” Z. Naturforsch. A 21(1), 149–154 (1972).
  33. A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
    [Crossref]
  34. S. A. Ivanov, A. I. Ignatiev, and N. V. Nikonorov, “Advances in photo-thermo-refractive glass composition modifications,” Proc. SPIE 9508, 95080E (2015).
  35. V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Tech. Phys. 59(5), 733–735 (2014).
    [Crossref]
  36. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
    [Crossref]
  37. L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A. Beléndez, “Study of angular responses of mixed amplitude--phase holographic gratings: shifted Borrmann effect,” Opt. Lett. 26(11), 786–788 (2001).
    [Crossref] [PubMed]
  38. S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Holographic characteristics of a modified photothermorefractive glass,” J. Opt. Technol. 81(6), 356–360 (2014).
    [Crossref]
  39. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12(12), 2901–2908 (1973).
    [Crossref] [PubMed]
  40. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15(1), 151–155 (1976).
    [Crossref] [PubMed]

2016 (3)

2015 (2)

2014 (5)

V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Tech. Phys. 59(5), 733–735 (2014).
[Crossref]

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Holographic characteristics of a modified photothermorefractive glass,” J. Opt. Technol. 81(6), 356–360 (2014).
[Crossref]

S. A. Ivanov, A. E. Angervaks, and A. S. Shcheulin, “Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights,” Proc. SPIE 9131, 91311B (2014).

S. A. Ivanov and V. A. Aseev, “Resonator free Er-Yb laser based on photo-thermo-refractive (PTR) glass,” Proc. SPIE 8959, 89591E (2014).

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

2013 (3)

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361(1), 26–37 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

2012 (1)

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

2011 (1)

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices,” J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011).
[Crossref]

2009 (1)

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiĭ, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
[Crossref]

2008 (2)

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008).
[Crossref]

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
[Crossref]

2007 (1)

L. B. Glebov, “Photosensitive holographic glass – new approach to creation of high power lasers,” Phys. Chem. Glas. J. Glas. Sci. Technol. Part B 48(3), 123–128 (2007).

2005 (1)

S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122(14), 144701 (2005).
[Crossref] [PubMed]

2002 (2)

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002).
[Crossref]

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
[Crossref]

2001 (2)

N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, “Influence of glass composition on the refractive index change upon photothermoinduced crystallization,” Glass Phys. Chem. 27(3), 241–249 (2001).
[Crossref]

L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A. Beléndez, “Study of angular responses of mixed amplitude--phase holographic gratings: shifted Borrmann effect,” Opt. Lett. 26(11), 786–788 (2001).
[Crossref] [PubMed]

2000 (1)

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Optical properties of silver ion-exchanged antimony doped glass,” J. Non-Cryst. Solids 278(1–3), 128–136 (2000).
[Crossref]

1993 (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

1992 (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

1978 (1)

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49(10), 5114–5123 (1978).
[Crossref]

1976 (2)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15(1), 151–155 (1976).
[Crossref] [PubMed]

1975 (1)

G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466–4473 (1975).
[Crossref]

1973 (1)

1972 (1)

C. Sinistri, R. Riccardu, C. Margheritis, and P. Tittarelli, “Thermodynamic Properties of Solid Systems AgCl + NaCl and AgBr + NaBr from Miscibility Gap Measurements,” Z. Naturforsch. A 21(1), 149–154 (1972).

1957 (1)

S. Tutihasi, “Optical Absorption by Silver Halides,” Phys. Rev. 105(3), 882–884 (1957).
[Crossref]

1939 (1)

A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

1931 (1)

V. H. Sehr, “Über die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln für den Dispersionsverlauf,” Z. Phys. 67(1), 24–36 (1931).

Abyzov, A. S.

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

Agafonova, D. S.

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

Angervaks, A. E.

S. A. Ivanov, A. E. Angervaks, and A. S. Shcheulin, “Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights,” Proc. SPIE 9131, 91311B (2014).

Arnold, G. W.

G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466–4473 (1975).
[Crossref]

Aseev, V. A.

S. A. Ivanov and V. A. Aseev, “Resonator free Er-Yb laser based on photo-thermo-refractive (PTR) glass,” Proc. SPIE 8959, 89591E (2014).

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Holographic characteristics of a modified photothermorefractive glass,” J. Opt. Technol. 81(6), 356–360 (2014).
[Crossref]

Beall, G. H.

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49(10), 5114–5123 (1978).
[Crossref]

Beléndez, A.

Blaya, S.

Breuls, A. H. E.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
[Crossref]

Butov, O. V.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
[Crossref]

Carretero, L.

Chukharev, A. V.

N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, “Influence of glass composition on the refractive index change upon photothermoinduced crystallization,” Glass Phys. Chem. 27(3), 241–249 (2001).
[Crossref]

Ciapurin, I. V.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002).
[Crossref]

Dubrovin, V. D.

V. D. Dubrovin, A. I. Ignatiev, and N. V. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6(5), 1701 (2016).
[Crossref]

V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Tech. Phys. 59(5), 733–735 (2014).
[Crossref]

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

Dyamant, I.

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

Efimov, A. M.

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361(1), 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices,” J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011).
[Crossref]

Fan, K.-N.

S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122(14), 144701 (2005).
[Crossref] [PubMed]

Fimia, A.

Fokin, V. M.

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

García, M. A.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Optical properties of silver ion-exchanged antimony doped glass,” J. Non-Cryst. Solids 278(1–3), 128–136 (2000).
[Crossref]

Glebov, A. L.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

Glebov, L. B.

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
[Crossref]

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008).
[Crossref]

L. B. Glebov, “Photosensitive holographic glass – new approach to creation of high power lasers,” Phys. Chem. Glas. J. Glas. Sci. Technol. Part B 48(3), 123–128 (2007).

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002).
[Crossref]

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

Glebova, L.

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
[Crossref]

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008).
[Crossref]

Glebova, L. N.

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

Golant, K. M.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
[Crossref]

Heidrich, P. F.

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Ignat’ev, A. I.

V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Tech. Phys. 59(5), 733–735 (2014).
[Crossref]

Ignatiev, A.

Ignatiev, A. I.

V. D. Dubrovin, A. I. Ignatiev, and N. V. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6(5), 1701 (2016).
[Crossref]

A. I. Ignatiev, D. A. Klyukin, V. S. Leontieva, N. V. Nikonorov, T. A. Shakhverdov, and A. I. Sidorov, “Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses,” Opt. Mater. Express 5(7), 1635 (2015).
[Crossref]

S. A. Ivanov, A. I. Ignatiev, and N. V. Nikonorov, “Advances in photo-thermo-refractive glass composition modifications,” Proc. SPIE 9508, 95080E (2015).

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Holographic characteristics of a modified photothermorefractive glass,” J. Opt. Technol. 81(6), 356–360 (2014).
[Crossref]

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361(1), 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices,” J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011).
[Crossref]

Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, “Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method,” 33(17), 3730–3735 (2015).

Ivanov, S. A.

S. A. Ivanov, A. I. Ignatiev, and N. V. Nikonorov, “Advances in photo-thermo-refractive glass composition modifications,” Proc. SPIE 9508, 95080E (2015).

S. A. Ivanov, A. E. Angervaks, and A. S. Shcheulin, “Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights,” Proc. SPIE 9131, 91311B (2014).

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Holographic characteristics of a modified photothermorefractive glass,” J. Opt. Technol. 81(6), 356–360 (2014).
[Crossref]

S. A. Ivanov and V. A. Aseev, “Resonator free Er-Yb laser based on photo-thermo-refractive (PTR) glass,” Proc. SPIE 8959, 89591E (2014).

Klimov, M.

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
[Crossref]

Klyukin, D. A.

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Lazareva, K. E.

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiĭ, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
[Crossref]

Leontieva, V. S.

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Li, Z.-H.

S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122(14), 144701 (2005).
[Crossref] [PubMed]

Llopis, J.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Optical properties of silver ion-exchanged antimony doped glass,” J. Non-Cryst. Solids 278(1–3), 128–136 (2000).
[Crossref]

Lumeau, J.

J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” Int. Mater. Rev. 6608(December), 1–19 (2016).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008).
[Crossref]

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
[Crossref]

Madrigal, R. F.

Margheritis, C.

C. Sinistri, R. Riccardu, C. Margheritis, and P. Tittarelli, “Thermodynamic Properties of Solid Systems AgCl + NaCl and AgBr + NaBr from Miscibility Gap Measurements,” Z. Naturforsch. A 21(1), 149–154 (1972).

Mokhun, O.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

Nikonorov, N.

Nikonorov, N. V.

V. D. Dubrovin, A. I. Ignatiev, and N. V. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6(5), 1701 (2016).
[Crossref]

A. I. Ignatiev, D. A. Klyukin, V. S. Leontieva, N. V. Nikonorov, T. A. Shakhverdov, and A. I. Sidorov, “Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses,” Opt. Mater. Express 5(7), 1635 (2015).
[Crossref]

S. A. Ivanov, A. I. Ignatiev, and N. V. Nikonorov, “Advances in photo-thermo-refractive glass composition modifications,” Proc. SPIE 9508, 95080E (2015).

V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Tech. Phys. 59(5), 733–735 (2014).
[Crossref]

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Holographic characteristics of a modified photothermorefractive glass,” J. Opt. Technol. 81(6), 356–360 (2014).
[Crossref]

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361(1), 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices,” J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011).
[Crossref]

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiĭ, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
[Crossref]

N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, “Influence of glass composition on the refractive index change upon photothermoinduced crystallization,” Glass Phys. Chem. 27(3), 241–249 (2001).
[Crossref]

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, “Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method,” 33(17), 3730–3735 (2015).

Paje, S. E.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Optical properties of silver ion-exchanged antimony doped glass,” J. Non-Cryst. Solids 278(1–3), 128–136 (2000).
[Crossref]

Panysheva, E. I.

N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, “Influence of glass composition on the refractive index change upon photothermoinduced crystallization,” Glass Phys. Chem. 27(3), 241–249 (2001).
[Crossref]

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

Patterson, A. L.

A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Petrovskii, G. T.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

Pierson, J. E.

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49(10), 5114–5123 (1978).
[Crossref]

Postnikov, E. S.

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361(1), 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices,” J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011).
[Crossref]

Rapaport, A.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

Riccardu, R.

C. Sinistri, R. Riccardu, C. Margheritis, and P. Tittarelli, “Thermodynamic Properties of Solid Systems AgCl + NaCl and AgBr + NaBr from Miscibility Gap Measurements,” Z. Naturforsch. A 21(1), 149–154 (1972).

Savvin, V. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

Sehr, V. H.

V. H. Sehr, “Über die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln für den Dispersionsverlauf,” Z. Phys. 67(1), 24–36 (1931).

Sgibnev, Y.

Sgibnev, Y. M.

Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, “Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method,” 33(17), 3730–3735 (2015).

Shakhverdov, T. A.

A. I. Ignatiev, D. A. Klyukin, V. S. Leontieva, N. V. Nikonorov, T. A. Shakhverdov, and A. I. Sidorov, “Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses,” Opt. Mater. Express 5(7), 1635 (2015).
[Crossref]

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

Shcheulin, A. S.

S. A. Ivanov, A. E. Angervaks, and A. S. Shcheulin, “Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights,” Proc. SPIE 9131, 91311B (2014).

Sidorov, A. I.

A. I. Ignatiev, D. A. Klyukin, V. S. Leontieva, N. V. Nikonorov, T. A. Shakhverdov, and A. I. Sidorov, “Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses,” Opt. Mater. Express 5(7), 1635 (2015).
[Crossref]

V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Tech. Phys. 59(5), 733–735 (2014).
[Crossref]

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiĭ, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
[Crossref]

Sinistri, C.

C. Sinistri, R. Riccardu, C. Margheritis, and P. Tittarelli, “Thermodynamic Properties of Solid Systems AgCl + NaCl and AgBr + NaBr from Miscibility Gap Measurements,” Z. Naturforsch. A 21(1), 149–154 (1972).

Smirnov, V.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

Smirnov, V. I.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002).
[Crossref]

Sorokina, M.

Stickley, C. M.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002).
[Crossref]

Stookey, S. D.

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49(10), 5114–5123 (1978).
[Crossref]

Tittarelli, P.

C. Sinistri, R. Riccardu, C. Margheritis, and P. Tittarelli, “Thermodynamic Properties of Solid Systems AgCl + NaCl and AgBr + NaBr from Miscibility Gap Measurements,” Z. Naturforsch. A 21(1), 149–154 (1972).

Tomashuk, A. L.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
[Crossref]

Torge, R.

Tsekhomskii, V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

Tsekhomskii, V. A.

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiĭ, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
[Crossref]

Tunimanova, I. V.

N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, “Influence of glass composition on the refractive index change upon photothermoinduced crystallization,” Glass Phys. Chem. 27(3), 241–249 (2001).
[Crossref]

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

Tutihasi, S.

S. Tutihasi, “Optical Absorption by Silver Halides,” Phys. Rev. 105(3), 882–884 (1957).
[Crossref]

Ulrich, R.

van Stralen, M. J. N.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
[Crossref]

Vasilev, V. N.

Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, “Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method,” 33(17), 3730–3735 (2015).

Vasilyev, V.

Vergnole, S.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

Villegas, M. A.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Optical properties of silver ion-exchanged antimony doped glass,” J. Non-Cryst. Solids 278(1–3), 128–136 (2000).
[Crossref]

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Wang, W.-N.

S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122(14), 144701 (2005).
[Crossref] [PubMed]

White, J. M.

Zanotto, E. D.

J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” Int. Mater. Rev. 6608(December), 1–19 (2016).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
[Crossref]

Zhao, S.

S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122(14), 144701 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Glass Phys. Chem. (1)

N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, “Influence of glass composition on the refractive index change upon photothermoinduced crystallization,” Glass Phys. Chem. 27(3), 241–249 (2001).
[Crossref]

Int. Mater. Rev. (1)

J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” Int. Mater. Rev. 6608(December), 1–19 (2016).
[Crossref]

J. Appl. Phys. (2)

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49(10), 5114–5123 (1978).
[Crossref]

G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466–4473 (1975).
[Crossref]

J. Chem. Phys. (1)

S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122(14), 144701 (2005).
[Crossref] [PubMed]

J. Non-Cryst. Solids (7)

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Optical properties of silver ion-exchanged antimony doped glass,” J. Non-Cryst. Solids 278(1–3), 128–136 (2000).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361(1), 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatiev, N. V. Nikonorov, and E. S. Postnikov, “Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices,” J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011).
[Crossref]

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008).
[Crossref]

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 456–461 (2008).
[Crossref]

I. Dyamant, A. S. Abyzov, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass,” J. Non-Cryst. Solids 378, 115–120 (2013).
[Crossref]

J. Opt. Technol. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Opt. Commun. (1)

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (Amst) (1)

V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst) 36(4), 753–759 (2014).
[Crossref]

Opt. Mater. Express (2)

Opt. Spectrosc. (2)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73(2), 237–241 (1992).

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiĭ, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
[Crossref]

Phys. Chem. Glas. J. Glas. Sci. Technol. Part B (1)

L. B. Glebov, “Photosensitive holographic glass – new approach to creation of high power lasers,” Phys. Chem. Glas. J. Glas. Sci. Technol. Part B 48(3), 123–128 (2007).

Phys. Rev. (2)

A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

S. Tutihasi, “Optical Absorption by Silver Halides,” Phys. Rev. 105(3), 882–884 (1957).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Proc. SPIE (5)

S. A. Ivanov, A. I. Ignatiev, and N. V. Nikonorov, “Advances in photo-thermo-refractive glass composition modifications,” Proc. SPIE 9508, 95080E (2015).

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 84280C (2012).
[Crossref]

S. A. Ivanov, A. E. Angervaks, and A. S. Shcheulin, “Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights,” Proc. SPIE 9131, 91311B (2014).

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002).
[Crossref]

S. A. Ivanov and V. A. Aseev, “Resonator free Er-Yb laser based on photo-thermo-refractive (PTR) glass,” Proc. SPIE 8959, 89591E (2014).

Tech. Phys. (1)

V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Tech. Phys. 59(5), 733–735 (2014).
[Crossref]

Z. Naturforsch. A (1)

C. Sinistri, R. Riccardu, C. Margheritis, and P. Tittarelli, “Thermodynamic Properties of Solid Systems AgCl + NaCl and AgBr + NaBr from Miscibility Gap Measurements,” Z. Naturforsch. A 21(1), 149–154 (1972).

Z. Phys. (1)

V. H. Sehr, “Über die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln für den Dispersionsverlauf,” Z. Phys. 67(1), 24–36 (1931).

Other (4)

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices,” 134(45), 18824–18833 (2012).

S. A. Nikonorov, V. Aseev, A. Ignatiev, E. Kolobkova, “Novel glasses and nanoglassceramics for photonic and plasmonic applications,” in Thirteenth International Conference on the Physics of Non-Crystalline Solids, 89.

Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, “Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method,” 33(17), 3730–3735 (2015).

N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Silver Nanoparticles in Oxide Glasses: Technologies and Properties,” in Silver Nanoparticles, D. P. Perez, ed. (In-Tech, 2010), p.177.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Absorption spectra of untreated PTR glass differing in the bromine concentration (mol.%): (1) 0, (2) 0.7, (3) 1.0, (4) 1.5 An inset shows bromine concentration remained in PTR glass according to XRF analysis vs. its as-batch concentration and the photos of untreated bromide PTR glass differing in the bromine concentration (mol.%): (1) 0, (2) 0.7, (3) 1.0, (4)
Fig. 2
Fig. 2 Effect of UV irradiation dose on the absorption spectra of PTR glass containing 0.7 mol.% Br. The exposure duration that sets a dose is (1) 0, (2) 1, (3) 5, (4) 50, and (5) 500 s. An inset presents the difference absorption spectra of glass containing 0.7 mol.% Br for various UV exposure durations, the durations being (1) 1, (2) 5, (3) 50, and (4) 500 s.
Fig. 3
Fig. 3 Absorption spectra PTR of UV-irradiated and heat-treated PTR glass for various UV exposure durations. (a) Spectra of PTR glass containing 0.25 mol.% Br, the exposure durations being (1) 0, (2) 1, (3) 5, (4) 50, and (5) 500 s. (b) Spectra of PTR glass containing 0.5 mol.% Br, the exposure durations being (1) 0, (2) 1, (3) 5, (4) 50, and (5) 500 s. An inset shows the photos of the glass samples containing 0.5 mol.% Br for the exposure durations of (1) 1, (2) 5, (3) 50, and (4) 500 s.
Fig. 4
Fig. 4 Absorption spectra of UV-irradiated (for 50 s) and heat-treated PTR glass with various bromine concentrations (mol.%) such as (1) 0, (2) 0.25, (3) 0.5, (4) 0.7, (5) 1.0, (6) 1.5 An inset shows the effect of bromine concentration on the average size of silver nanoparticles (NP); calculated using Mie theory [27,28]. Black dots – calculated size of silver nanoparticles for different bromine concentration. Red line – extrapolation through out all bromine concentrations.
Fig. 5
Fig. 5 Absorption spectra of UV-irradiated (for 50 s) and heat-treated bromide PTR glass containing 0.7 mol.% of Br under liquid nitrogen temperature. 1,2 – Absorption spectra of silver bromide film (250 μm) at room and liquid nitrogen temperatures respectively [27]; 3,4 - Absorption spectra of UV-irradiated (for 50 s) and heat-treated PTR glass at room and liquid nitrogen temperatures respectively. An inset shows the X-ray diffraction pattern of UV-irradiated for 50s and heat treated bromide PTR glass with 1.5 mol.% Br. Reproduced with permission [27]. Copyright 1957, American Physical Society.
Fig. 6
Fig. 6 Scheme for the photo-thermo-induced crystallization mechanism inherent in bromide PTR glass for various Br concentrations (0 – 1.5 mol.%). a – Photoactivation of PTR glass (Ce3+ ion photoionization), formation of neutral silver molecular clusters, and capturing electrons by Sb5+ ions. b – Discharging electrons by Sb and capturing them by Ag ions with the formation of neutral silver atoms and clusters. c –Growth of silver nanoparticles with the shell composed of silver bromide in glass containing 0.25 – 0.7 mol.% Br and growth of the small silver nanoparticles with broad plasmon resonance peak, covered by the shell made of silver bromide nonocrystals in glass containing 1 – 1.5 mol.% Br.
Fig. 7
Fig. 7 Absorption spectra of PTR glass containing 0.7 mol.% Br. (1) is the spectrum for initial untreated glass, (2) is that for glass after the UV irradiation for 50 s. alone, (3) is the spectrum for glass after the heat treatment alone, and (4) is the one for glass after the UV irradiation for 50 s and subsequent heat treatment. An inset shows the photos and the absorption spectra (700-2500nm) of treated bromide PTR glass samples containing 0.7 mol.% Br. (1) is initial untreated glass, (2) is the glass after the UV irradiation for 50 s alone, (3) is the glass after the heat treatment alone, and (4) is the glass after the UV irradiation for 50 s and subsequent heat treatment.
Fig. 8
Fig. 8 Effect of bromine concentration on the refractive index (nd) of PTR glass. 1 – untreated glass samples, 2 – glass samples after the heat treatment, 3 – glass samples after the UV irradiation and subsequent heat treatment.
Fig. 9
Fig. 9 Angular selectivity of the written Bragg grating, on the inset shown the comparison of calculated and experimentally measured intensity of passed through the Bragg grating radiation. Photo of the reflecting Bragg grating in visible light written on bromide PTR glass with 0.7 mol.% of Br are shown below the inset.
Fig. 10
Fig. 10 The scheme of the planar waveguide recording and measuring in bromide PTR glass with 0.7 mol. % of Br and reduced SbO2 concentration. 1 – Schematic illustration of waveguide writing process, and photo of UV irradiated sample luminescence with latent image under UV excitation (λex = 365 nm) ; 2 – Manifestation of latent image; 3 – Scheme of the written waveguide measurement by method of the selective resonance excitation of waveguide modes implemented with the prism couplers of laser beams (λ = 632.8 nm) and the photo of the written waveguide mode structure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ce 3 + + hn e + [ Ce 3 + ] +
e + Sb 5 + [ Sb 5 + ]

Metrics