Abstract

Microelectrode technologies have been widely used for a number of applications including optoelectronic and bioelectronics. In this study, we report highly conductive and highly reliable silver nanowire (AgNW)/poly(3,4,-ethylene dioxy thiophene): poly(styrenesulfonate) (PEDOT:PSS) composite microelectrodes fabricated by simple poly(ethylene glycol) photolithography. The electrical properties of AgNW/PEDOT:PSS were examined as functions of the AgNW concentration and layer number, and then compared with those of pure AgNWs. Importantly, the AgNW/PEDOT:PSS composite exhibited a high conductivity with a low sheet resistance of 1.22 Ω/□ as well as an excellent electrical standard deviation of 0.96 Ω/□ in a reliability test. We also demonstrated that these composite micropatterns were completely transferred from the glass to a flexible hydrogel by a direct transfer process. Moreover, the composite microelectrodes exhibited increases in the electrical resistance of only 11 and 24% after over 300 and 500 bending cycles, which were 65 and 90% enhancements compared to the single AgNW microelectrode, respectively. This novel approach could become a low-cost and efficient design for fabricating high-performance microelectrodes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical, structural, and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms

Zhixiong Cao, Zhuoying Chen, and Ludovic Escoubas
Opt. Mater. Express 4(12) 2525-2534 (2014)

Highly flexible electrochromic devices enabled by electroplated nickel grid electrodes and multifunctional hydrogels

Shi-Qing Zhao, Yan-Hua Liu, Zhu Ming, Cheng Chen, Wen-Wen Xu, Linsen Chen, and Wenbin Huang
Opt. Express 27(21) 29547-29557 (2019)

Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy

Yiwen Sun, Shengxin Yang, Pengju Du, Fei Yan, Junle Qu, Zexuan Zhu, Jian Zuo, and Cunlin Zhang
Opt. Express 25(3) 1723-1731 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
    [Crossref] [PubMed]
  2. G. Eda, W. Ji, F. Xia, and H. Zhao, “Feature issue introduction: two-dimensional materials for photonics and optoelectronics,” Opt. Mater. Express 6(7), 2458–2459 (2016).
    [Crossref]
  3. S.-H. Chung and H. Y. Noh, “Color-tunable stacked organic light-emitting diode with semi-transparent metal electrode,” Opt. Mater. Express 6(9), 2834–2840 (2016).
    [Crossref]
  4. W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).
  5. R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
    [Crossref]
  6. V. Gautam, D. Rand, Y. Hanein, and K. S. Narayan, “A polymer optoelectronic interface provides visual cues to a blind retina,” Adv. Mater. 26(11), 1751–1756 (2014).
    [Crossref] [PubMed]
  7. Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” ACS Appl. Mater. Interfaces 6(21), 18401–18407 (2014).
    [Crossref] [PubMed]
  8. S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
    [Crossref] [PubMed]
  9. D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
    [Crossref] [PubMed]
  10. Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).
  11. C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
    [Crossref]
  12. B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
    [Crossref] [PubMed]
  13. J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
    [Crossref] [PubMed]
  14. A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
    [Crossref] [PubMed]
  15. W.-G. Koh, A. Revzin, and M. V. Pishko, “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir 18(7), 2459–2462 (2002).
    [Crossref] [PubMed]
  16. B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
    [Crossref] [PubMed]
  17. M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
    [Crossref]
  18. H. Ataee-Esfahani, M. Imura, and Y. Yamauchi, “All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface,” Angew. Chem. Int. Ed. Engl. 52(51), 13611–13615 (2013).
    [Crossref] [PubMed]
  19. H. Wang, S. Ishihara, K. Ariga, and Y. Yamauchi, “All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis,” J. Am. Chem. Soc. 134(26), 10819–10821 (2012).
    [Crossref] [PubMed]
  20. V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
    [Crossref] [PubMed]
  21. P. Poudel and Q. Qiao, “One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells,” Nanoscale 4(9), 2826–2838 (2012).
    [Crossref] [PubMed]
  22. S. Kim, S. Y. Kim, J. Kim, and J. H. Kim, “Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5636–5643 (2014).
    [Crossref]
  23. Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
    [Crossref]
  24. D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
    [Crossref] [PubMed]
  25. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
    [Crossref] [PubMed]
  26. S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
    [Crossref]
  27. J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
    [Crossref]
  28. J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
    [Crossref] [PubMed]

2017 (2)

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

2016 (8)

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
[Crossref] [PubMed]

G. Eda, W. Ji, F. Xia, and H. Zhao, “Feature issue introduction: two-dimensional materials for photonics and optoelectronics,” Opt. Mater. Express 6(7), 2458–2459 (2016).
[Crossref]

S.-H. Chung and H. Y. Noh, “Color-tunable stacked organic light-emitting diode with semi-transparent metal electrode,” Opt. Mater. Express 6(9), 2834–2840 (2016).
[Crossref]

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

2015 (2)

S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
[Crossref]

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

2014 (6)

W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
[Crossref]

V. Gautam, D. Rand, Y. Hanein, and K. S. Narayan, “A polymer optoelectronic interface provides visual cues to a blind retina,” Adv. Mater. 26(11), 1751–1756 (2014).
[Crossref] [PubMed]

Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” ACS Appl. Mater. Interfaces 6(21), 18401–18407 (2014).
[Crossref] [PubMed]

J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
[Crossref] [PubMed]

S. Kim, S. Y. Kim, J. Kim, and J. H. Kim, “Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5636–5643 (2014).
[Crossref]

2013 (2)

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

H. Ataee-Esfahani, M. Imura, and Y. Yamauchi, “All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface,” Angew. Chem. Int. Ed. Engl. 52(51), 13611–13615 (2013).
[Crossref] [PubMed]

2012 (2)

H. Wang, S. Ishihara, K. Ariga, and Y. Yamauchi, “All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis,” J. Am. Chem. Soc. 134(26), 10819–10821 (2012).
[Crossref] [PubMed]

P. Poudel and Q. Qiao, “One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells,” Nanoscale 4(9), 2826–2838 (2012).
[Crossref] [PubMed]

2011 (3)

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
[Crossref] [PubMed]

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

2010 (1)

S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
[Crossref] [PubMed]

2002 (1)

W.-G. Koh, A. Revzin, and M. V. Pishko, “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir 18(7), 2459–2462 (2002).
[Crossref] [PubMed]

2001 (1)

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Acikgoz, C.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Ahn, Y.

Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” ACS Appl. Mater. Interfaces 6(21), 18401–18407 (2014).
[Crossref] [PubMed]

Akita, S.

W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).

Arie, T.

W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).

Ariga, K.

H. Wang, S. Ishihara, K. Ariga, and Y. Yamauchi, “All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis,” J. Am. Chem. Soc. 134(26), 10819–10821 (2012).
[Crossref] [PubMed]

Ataee-Esfahani, H.

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

H. Ataee-Esfahani, M. Imura, and Y. Yamauchi, “All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface,” Angew. Chem. Int. Ed. Engl. 52(51), 13611–13615 (2013).
[Crossref] [PubMed]

Burkhard, G. F.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Chen, B.-H.

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

Choi, D. Y.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Choi, S.

S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
[Crossref] [PubMed]

Chung, M. H.

S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
[Crossref]

Chung, S.-H.

Cui, H.-F.

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

Deister, C.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Eda, G.

Fan, W.

Feng, J.

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

Gao, Y.

J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
[Crossref] [PubMed]

Gautam, V.

V. Gautam, D. Rand, Y. Hanein, and K. S. Narayan, “A polymer optoelectronic interface provides visual cues to a blind retina,” Adv. Mater. 26(11), 1751–1756 (2014).
[Crossref] [PubMed]

Gaynor, W.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Ghaffari, R.

S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
[Crossref] [PubMed]

Hanein, Y.

V. Gautam, D. Rand, Y. Hanein, and K. S. Narayan, “A polymer optoelectronic interface provides visual cues to a blind retina,” Adv. Mater. 26(11), 1751–1756 (2014).
[Crossref] [PubMed]

Harada, S.

W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).

Hempenius, M. A.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Higuchi, M.

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

Hile, D. D.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Ho, K.-C.

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

Honda, W.

W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).

Hong, N.

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
[Crossref]

Hossain, M. S. A.

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

Hu, C.-W.

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

Huang, H.

Hubarevich, A.

Huskens, J.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Hyeon, T.

S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
[Crossref] [PubMed]

Ido, Y.

S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
[Crossref] [PubMed]

Imura, M.

H. Ataee-Esfahani, M. Imura, and Y. Yamauchi, “All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface,” Angew. Chem. Int. Ed. Engl. 52(51), 13611–13615 (2013).
[Crossref] [PubMed]

Ishihara, S.

H. Wang, S. Ishihara, K. Ariga, and Y. Yamauchi, “All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis,” J. Am. Chem. Soc. 134(26), 10819–10821 (2012).
[Crossref] [PubMed]

Ji, W.

Jiang, B.

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

Joo, S.

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
[Crossref]

Jung, H.

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
[Crossref]

Kang, H. W.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Kao, S.-Y.

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

Kim, B.

J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
[Crossref] [PubMed]

Kim, B. S.

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Kim, D.

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

Kim, D.-H.

S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
[Crossref] [PubMed]

Kim, E.

J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
[Crossref] [PubMed]

Kim, J.

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
[Crossref]

S. Kim, S. Y. Kim, J. Kim, and J. H. Kim, “Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5636–5643 (2014).
[Crossref]

J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
[Crossref] [PubMed]

Kim, J. H.

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
[Crossref]

S. Kim, S. Y. Kim, J. Kim, and J. H. Kim, “Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5636–5643 (2014).
[Crossref]

Kim, R.

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
[Crossref]

Kim, S.

S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
[Crossref]

S. Kim, S. Y. Kim, J. Kim, and J. H. Kim, “Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5636–5643 (2014).
[Crossref]

Kim, S. S.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Kim, S. Y.

S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
[Crossref]

S. Kim, S. Y. Kim, J. Kim, and J. H. Kim, “Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5636–5643 (2014).
[Crossref]

Ko, Y.

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

Koh, W.-G.

W.-G. Koh, A. Revzin, and M. V. Pishko, “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir 18(7), 2459–2462 (2002).
[Crossref] [PubMed]

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Lee, D.

Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” ACS Appl. Mater. Interfaces 6(21), 18401–18407 (2014).
[Crossref] [PubMed]

Lee, H.

S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
[Crossref] [PubMed]

Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” ACS Appl. Mater. Interfaces 6(21), 18401–18407 (2014).
[Crossref] [PubMed]

Lee, J.

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

Lee, S.-S.

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Lee, Y.

Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” ACS Appl. Mater. Interfaces 6(21), 18401–18407 (2014).
[Crossref] [PubMed]

Li, C.

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

Liao, Y.-C.

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

Lim, R. J. W.

Liu, Y.-S.

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

Malgras, V.

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

Marus, M.

McGehee, M. D.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Mellott, M. B.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Miyake, T.

S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
[Crossref] [PubMed]

Nagamine, K.

S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
[Crossref] [PubMed]

Nam, Y.

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
[Crossref]

Narayan, K. S.

V. Gautam, D. Rand, Y. Hanein, and K. S. Narayan, “A polymer optoelectronic interface provides visual cues to a blind retina,” Adv. Mater. 26(11), 1751–1756 (2014).
[Crossref] [PubMed]

Nishizawa, M.

S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
[Crossref] [PubMed]

Noh, H. Y.

Ou, X.-L.

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

Park, J. H.

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Park, M.-S.

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

Park, T.

J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
[Crossref] [PubMed]

Patel, D.

J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
[Crossref] [PubMed]

Peumans, P.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Pishko, M. V.

W.-G. Koh, A. Revzin, and M. V. Pishko, “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir 18(7), 2459–2462 (2002).
[Crossref] [PubMed]

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Poudel, P.

P. Poudel and Q. Qiao, “One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells,” Nanoscale 4(9), 2826–2838 (2012).
[Crossref] [PubMed]

Pyo, J. B.

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Qiao, Q.

P. Poudel and Q. Qiao, “One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells,” Nanoscale 4(9), 2826–2838 (2012).
[Crossref] [PubMed]

Rand, D.

V. Gautam, D. Rand, Y. Hanein, and K. S. Narayan, “A polymer optoelectronic interface provides visual cues to a blind retina,” Adv. Mater. 26(11), 1751–1756 (2014).
[Crossref] [PubMed]

Revzin, A.

J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
[Crossref] [PubMed]

W.-G. Koh, A. Revzin, and M. V. Pishko, “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir 18(7), 2459–2462 (2002).
[Crossref] [PubMed]

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Russell, R. J.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Sekine, S.

S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
[Crossref] [PubMed]

Shim, K.

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

Shin, D.-S.

J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
[Crossref] [PubMed]

Shin, K.-Y.

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Smirnov, A.

Son, J. G.

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Sun, H.-B.

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

Sun, X. W.

Sung, H. J.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Takei, K.

W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).

Vancso, G. J.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Wang, H.

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

H. Wang, S. Ishihara, K. Ariga, and Y. Yamauchi, “All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis,” J. Am. Chem. Soc. 134(26), 10819–10821 (2012).
[Crossref] [PubMed]

Wu, K. C.-W.

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

Xia, F.

Xu, M.

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

Yadavalli, V. K.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Yamauchi, Y.

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

H. Ataee-Esfahani, M. Imura, and Y. Yamauchi, “All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface,” Angew. Chem. Int. Ed. Engl. 52(51), 13611–13615 (2013).
[Crossref] [PubMed]

H. Wang, S. Ishihara, K. Ariga, and Y. Yamauchi, “All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis,” J. Am. Chem. Soc. 134(26), 10819–10821 (2012).
[Crossref] [PubMed]

You, J.

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
[Crossref] [PubMed]

J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
[Crossref] [PubMed]

Zhao, H.

ACS Appl. Mater. Interfaces (4)

Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” ACS Appl. Mater. Interfaces 6(21), 18401–18407 (2014).
[Crossref] [PubMed]

D. Kim, J. Kim, Y. Ko, K. Shim, J. H. Kim, and J. You, “A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes,” ACS Appl. Mater. Interfaces 8(48), 33175–33182 (2016).
[Crossref] [PubMed]

B.-H. Chen, S.-Y. Kao, C.-W. Hu, M. Higuchi, K.-C. Ho, and Y.-C. Liao, “Printed multicolor high-contrast electrochromic devices,” ACS Appl. Mater. Interfaces 7(45), 25069–25076 (2015).
[Crossref] [PubMed]

B. S. Kim, K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, “Reversibly stretchable, optically transparent radio-frequency antennas based on wavy ag nanowire networks,” ACS Appl. Mater. Interfaces 8(4), 2582–2590 (2016).
[Crossref] [PubMed]

Adv. Healthc. Mater. (1)

J. You, D.-S. Shin, D. Patel, Y. Gao, and A. Revzin, “Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes,” Adv. Healthc. Mater. 3(1), 126–132 (2014).
[Crossref] [PubMed]

Adv. Mater. (6)

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, and Y. Yamauchi, “Nanoarchitectures for Mesoporous Metals,” Adv. Mater. 28(6), 993–1010 (2016).
[Crossref] [PubMed]

J. Kim, J. You, B. Kim, T. Park, and E. Kim, “Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films,” Adv. Mater. 23(36), 4168–4173 (2011).
[Crossref] [PubMed]

V. Gautam, D. Rand, Y. Hanein, and K. S. Narayan, “A polymer optoelectronic interface provides visual cues to a blind retina,” Adv. Mater. 26(11), 1751–1756 (2014).
[Crossref] [PubMed]

S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.-H. Kim, “Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials,” Adv. Mater. 28(22), 4203–4218 (2016).
[Crossref] [PubMed]

W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, “Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques,” Adv. Mater. 24(22), 3299–3304 (2014).

Angew. Chem. Int. Ed. Engl. (1)

H. Ataee-Esfahani, M. Imura, and Y. Yamauchi, “All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface,” Angew. Chem. Int. Ed. Engl. 52(51), 13611–13615 (2013).
[Crossref] [PubMed]

Biomed. Eng. Lett. (1)

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, “Recent trends in microelectrode array technology for in vitro neural interface platform,” Biomed. Eng. Lett. 4(2), 129–141 (2014).
[Crossref]

Eur. Polym. J. (1)

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

J. Am. Chem. Soc. (2)

S. Sekine, Y. Ido, T. Miyake, K. Nagamine, and M. Nishizawa, “Conducting polymer electrodes printed on hydrogel,” J. Am. Chem. Soc. 132(38), 13174–13175 (2010).
[Crossref] [PubMed]

H. Wang, S. Ishihara, K. Ariga, and Y. Yamauchi, “All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis,” J. Am. Chem. Soc. 134(26), 10819–10821 (2012).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, “A one-step roll-to-roll process of stable AgNW/PEDOT:PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5859–5868 (2015).
[Crossref]

S. Kim, S. Y. Kim, J. Kim, and J. H. Kim, “Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5636–5643 (2014).
[Crossref]

Langmuir (2)

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

W.-G. Koh, A. Revzin, and M. V. Pishko, “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir 18(7), 2459–2462 (2002).
[Crossref] [PubMed]

Mater. Horiz. (1)

J. Kim, J. Lee, J. You, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, and J. H. Kim, “Conductive polymers for next-generation energy storage systems: recent progress and new functions,” Mater. Horiz. 3(6), 517–535 (2016).
[Crossref]

Nanoscale (2)

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

P. Poudel and Q. Qiao, “One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells,” Nanoscale 4(9), 2826–2838 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (3)

Org. Electron. (1)

Y.-S. Liu, J. Feng, X.-L. Ou, H.-F. Cui, M. Xu, and H.-B. Sun, “Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices,” Org. Electron. 31, 247–252 (2016).
[Crossref]

Sci. Rep. (1)

Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim, and J. You, “Simple, toxic-free photopatterning of highly conductive silver nanowires on hydrogels for soft electronics,” Sci. Rep. 7, 2282 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the fabrication of AgNW/PEDOT:PSS composite micropatterns on the glass and hydrogel substrates via PEG photolithography and second gelation methods. i) The AgNW dispersion solution (0.2, 0.6, 1 wt%) was spin-coated on the glass substrate and the PEDOT:PSS solution was then overcoated on the AgNW-coated substrate. ii) The PEG photolithography process using UV exposure via a photomask. iii) Peeling off the PEG hydrogel layer of the UV-exposed AgNW/PEDOT:PSS region to construct the AgNW/PEDOT:PSS composite micropattern on the region not exposed to UV. iv) Transferring the AgNW/PEDOT pattern from the glass to the hydrogel substrate via the second PEG gelation.
Fig. 2
Fig. 2 Photographic (left) and optical microscopic (right) images of AgNW/PEDOT:PSS micropatterns with a line width of 300 μm on the (A) glass and (B) hydrogel substrates.
Fig. 3
Fig. 3 FE-SEM images of (A) pure AgNWs used in the preparation of composite micropatterns. (B and C) AgNW /PEDOT:PSS composite micropatterns (500 μm width) on the glass substrate. (D, E, and F) AgNW/PEDOT:PSS composite micropatterns (500 μm width) on the hydrogel substrate.
Fig. 4
Fig. 4 Sheet resistance of single AgNW and AgNW/PEDOT:PSS composite films on a glass substrate (2.5 cm × 2.5 cm) when AgNWs were spin-coated (A) two and (B) five times; *p < 0.05. (C) The standard deviation values of single AgNW and AgNW/PEDOT:PSS composite films when AgNWs were spin-coated two and five times on the glass substrate. (D) Current-voltage (I-V) characteristics of the AgNW/PEDOT:PSS composite-micropatterns (500 μm in width and 1.5 cm in length) on both the glass and hydrogel substrates.
Fig. 5
Fig. 5 Electrical stability of pure AgNW and AgNW/PEDOT:PSS composite micropatterns (500 μm width) on the hydrogels during the (A) tape and (B) bending tests. The inset of (B) shows the photographs of the LED emission on the AgNW/PEDOT:PSS micropatterns on the hydrogel substrates before and after the bending cycle test.

Metrics