Abstract

There have been numerous reports on hybridization to overcome the intrinsic limitations or properties of existing materials, and to develop a better composite for application in diverse nanostructured devices. Therefore, such a new functional material with a hierarchy may attract considerable attention in the development of advanced function in conventional devices. In this study, we suggest a facile protocol to fabricate an advanced hybrid composite of carbon nanotubes (CNTs) and Ru inverse opal (IO) structures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of Carbon nanotube-poly-methyl-methacrylate composites for nonlinear photonic devices

Amos Martinez, Sho Uchida, Yong-Won Song, Takaaki Ishigure, and Shinji Yamashita
Opt. Express 16(15) 11337-11343 (2008)

Simulation of an asymmetric contacted carbon nanotube for solar-energy harvesting

H. Abdel Rahman, K. Kirah, H. Ghali, and W. Anis
Appl. Opt. 53(6) 1237-1241 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
    [Crossref] [PubMed]
  2. Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
    [Crossref] [PubMed]
  3. J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
    [Crossref] [PubMed]
  4. Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
    [Crossref] [PubMed]
  5. Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
    [Crossref] [PubMed]
  6. E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
    [Crossref] [PubMed]
  7. F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
    [Crossref] [PubMed]
  8. Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
    [Crossref] [PubMed]
  9. Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
    [Crossref]
  10. Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
    [Crossref] [PubMed]
  11. R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
    [Crossref]
  12. S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
    [Crossref]
  13. Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
    [Crossref] [PubMed]
  14. M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
    [Crossref] [PubMed]
  15. R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
    [Crossref] [PubMed]
  16. D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
    [Crossref] [PubMed]
  17. W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
    [Crossref]
  18. D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
    [Crossref] [PubMed]
  19. D. H. Lee, W. J. Lee, and S. O. Kim, “Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays,” Nano Lett. 9(4), 1427–1432 (2009).
    [Crossref] [PubMed]
  20. Y.-S. Li, J.-L. Liao, S.-Y. Wang, and W.-H. Chiang, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons,” Sci. Rep. 6(1), 22755 (2016).
    [Crossref] [PubMed]
  21. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
    [Crossref] [PubMed]
  22. Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
    [Crossref] [PubMed]
  23. Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
    [Crossref]
  24. Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
    [Crossref]

2017 (3)

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

2016 (2)

Y.-S. Li, J.-L. Liao, S.-Y. Wang, and W.-H. Chiang, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons,” Sci. Rep. 6(1), 22755 (2016).
[Crossref] [PubMed]

M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
[Crossref] [PubMed]

2015 (2)

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

2014 (5)

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
[Crossref]

2013 (2)

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
[Crossref] [PubMed]

2012 (4)

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
[Crossref] [PubMed]

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

2011 (1)

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

2010 (2)

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

2009 (2)

Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
[Crossref] [PubMed]

D. H. Lee, W. J. Lee, and S. O. Kim, “Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays,” Nano Lett. 9(4), 1427–1432 (2009).
[Crossref] [PubMed]

2005 (1)

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Adinolfi, V.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Ahn, H.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Bai, Y.

Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
[Crossref]

Baik, J. M.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Boppella, R.

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

Byon, H. R.

E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
[Crossref] [PubMed]

Byun, M.

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

Cano, Z. P.

M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
[Crossref] [PubMed]

Cha, M.-A.

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Chang, J.

Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
[Crossref]

Chen, M.

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Chen, Z.

M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
[Crossref] [PubMed]

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

Chen, Z. P.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Chiang, W.-H.

Y.-S. Li, J.-L. Liao, S.-Y. Wang, and W.-H. Chiang, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons,” Sci. Rep. 6(1), 22755 (2016).
[Crossref] [PubMed]

Choi, D. S.

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

Choi, S. Y.

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Chung, K.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Dai, H.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Dresselhaus, G.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Dresselhaus, M. S.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Du, M.

Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
[Crossref]

Endo, M.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Feng, Z.

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

Gao, L.

Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
[Crossref]

Guo, X.

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Han, S.-B.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Han, T. H.

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Hayashi, T.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

He, P.

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Hess, C.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Higgins, D.

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

Hofmann, M.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Hong, S. H.

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Hou, Y.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Hu, P.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Hwang, J. W.

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Idrobo, J.-C.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Jang, Y. H.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Jang, Y. J.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Jeon, S.

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Jeong, I.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Jeong, M. J.

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

Jian, Z.

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Jorio, A.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Kaburagi, Y.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Kanjanaboos, P.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Khatua, D.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Kim, D.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Kim, D. H.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Kim, H.

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

Kim, J. E.

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Kim, J. G.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Kim, J. Y.

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

Kim, K.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Kim, M. H.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Kim, S. O.

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

D. H. Lee, W. J. Lee, and S. O. Kim, “Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays,” Nano Lett. 9(4), 1427–1432 (2009).
[Crossref] [PubMed]

Kim, Y. A.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Ko, M. J.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Kochuveedu, S. T.

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Kosynkin, D. V.

Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
[Crossref] [PubMed]

Kwon, H.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Lee, D. H.

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

D. H. Lee, W. J. Lee, and S. O. Kim, “Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays,” Nano Lett. 9(4), 1427–1432 (2009).
[Crossref] [PubMed]

Lee, D. U.

M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
[Crossref] [PubMed]

Lee, G. Y.

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

Lee, J. A.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Lee, J.-E.

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

Lee, N.-S.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Lee, S. H.

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

Lee, S.-S.

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Lee, W. J.

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

D. H. Lee, W. J. Lee, and S. O. Kim, “Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays,” Nano Lett. 9(4), 1427–1432 (2009).
[Crossref] [PubMed]

Lee, Y.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
[Crossref] [PubMed]

Li, D.

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Li, D. J.

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

Li, F.

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Li, H.

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

Li, Y.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Li, Y.-S.

Y.-S. Li, J.-L. Liao, S.-Y. Wang, and W.-H. Chiang, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons,” Sci. Rep. 6(1), 22755 (2016).
[Crossref] [PubMed]

Liang, Y.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Liao, J.-L.

Y.-S. Li, J.-L. Liao, S.-Y. Wang, and W.-H. Chiang, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons,” Sci. Rep. 6(1), 22755 (2016).
[Crossref] [PubMed]

Lim, J.

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

Lin, Z.

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

Liu, P.

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Maiti, U. N.

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

Marques Mota, F.

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

May, K. J.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
[Crossref] [PubMed]

Mota, F. M.

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

Oh, Y.

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

Ohta, T.

E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
[Crossref] [PubMed]

Osato, K.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Ouellette, O.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Park, J. H.

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

Park, K.-W.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Park, M. G.

M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
[Crossref] [PubMed]

Pennycook, S. J.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Perry, E. E.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
[Crossref] [PubMed]

Quan, L. N.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Rani, A.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Ruoff, R. S.

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Ryu, K. Y.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Ryu, Y.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Saito, R.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Sargent, E. H.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Seo, M. H.

M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
[Crossref] [PubMed]

Seok, J.

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Shan, J.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Shao-Horn, Y.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
[Crossref] [PubMed]

Shin, H.

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Shin, K.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Son, T.

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

Steinhart, M.

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Sun, J.

Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
[Crossref]

Sun, Z.

Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
[Crossref] [PubMed]

Suntivich, J.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
[Crossref] [PubMed]

Tour, J. M.

Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
[Crossref] [PubMed]

Tsukada, T.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Tsuruoka, S.

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Wang, D.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Wang, H.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

Wang, H. F.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Wang, S.-Y.

Y.-S. Li, J.-L. Liao, S.-Y. Wang, and W.-H. Chiang, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons,” Sci. Rep. 6(1), 22755 (2016).
[Crossref] [PubMed]

Wei, F.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Wu, S.

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Xie, L.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Xin, X.

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

Yamada, A.

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Yamanaka, K.

E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
[Crossref] [PubMed]

Yang, H. G.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Yang, S.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Yao, J.

Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
[Crossref] [PubMed]

Yilmaz, E.

E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
[Crossref] [PubMed]

Yogi, C.

E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
[Crossref] [PubMed]

Yoon, S.

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

Yu, A.

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

Zhang, B.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Zhang, T.

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
[Crossref] [PubMed]

Zhao, H. J.

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Zhou, H.

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Zhou, W.

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

R. Boppella, S. T. Kochuveedu, H. Kim, M. J. Jeong, F. Marques Mota, J. H. Park, and D. H. Kim, “Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting,” ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017).
[Crossref] [PubMed]

ACS Energy Lett. (1)

Y. H. Jang, A. Rani, L. N. Quan, V. Adinolfi, P. Kanjanaboos, O. Ouellette, T. Son, Y. J. Jang, K. Chung, H. Kwon, D. Kim, D. H. Kim, and E. H. Sargent, “Graphene oxide shells on plasmonic nanostructures lead to high-performance photovoltaics: A model study based on dye-sensitized solar cells,” ACS Energy Lett. 2(1), 117–123 (2017).
[Crossref]

ACS Nano (1)

Y. J. Jang, Y. H. Jang, S.-B. Han, D. Khatua, C. Hess, H. Ahn, Y. Ryu, K. Shin, K.-W. Park, M. Steinhart, and D. H. Kim, “Nanostructured metal/carbon hybrids for electrocatalysis by direct carbonization of inverse micelle multilayers,” ACS Nano 7(2), 1573–1582 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Adv. Mater. 22(11), 1247–1252 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, and H. Zhou, “Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries,” Angew. Chem. Int. Ed. Engl. 53(2), 442–446 (2014).
[Crossref] [PubMed]

Carbon (1)

Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method,” Carbon 43(11), 2243–2250 (2005).
[Crossref]

Green Chem. (1)

S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M.-A. Cha, H. Shin, S. Yoon, S.-S. Lee, S. O. Kim, K. Shin, M. Steinhart, and D. H. Kim, “Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates,” Green Chem. 13(12), 3397–3405 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin, and J. M. Tour, “Transforming carbon nanotube devices into nanoribbon devices,” J. Am. Chem. Soc. 131(37), 13460–13463 (2009).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (2)

Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, “Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3834–3840 (2014).
[Crossref]

R. Boppella, J.-E. Lee, F. M. Mota, J. Y. Kim, Z. Feng, and D. H. Kim, “Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction,” J. Mater. Chem. A Mater. Energy Sustain. 5(15), 7072–7080 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, “Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions,” J. Phys. Chem. Lett. 3(3), 399–404 (2012).
[Crossref] [PubMed]

Nano Lett. (6)

Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, and D. H. Kim, “An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode,” Nano Lett. 12(1), 479–485 (2012).
[Crossref] [PubMed]

E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon, “Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles,” Nano Lett. 13(10), 4679–4684 (2013).
[Crossref] [PubMed]

Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, “Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application,” Nano Lett. 12(4), 1946–1952 (2012).
[Crossref] [PubMed]

D. H. Lee, W. J. Lee, and S. O. Kim, “Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays,” Nano Lett. 9(4), 1427–1432 (2009).
[Crossref] [PubMed]

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, “Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction,” Nano Lett. 14(3), 1228–1233 (2014).
[Crossref] [PubMed]

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, and H. Zhou, “The water catalysis at oxygen cathodes of lithium-oxygen cells,” Nat. Commun. 6, 7843 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, and H. Dai, “An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes,” Nat. Nanotechnol. 7(6), 394–400 (2012).
[Crossref] [PubMed]

Part. Part. Syst. Charact. (1)

W. J. Lee, D. S. Choi, S. H. Lee, J. Lim, J. E. Kim, D. J. Li, G. Y. Lee, and S. O. Kim, “Electroless bimetal decoration on N‐doped carbon nanotubes and graphene for oxygen reduction reaction catalysts,” Part. Part. Syst. Charact. 31(9), 965–970 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

J. Seok, K. Y. Ryu, J. A. Lee, I. Jeong, N.-S. Lee, J. M. Baik, J. G. Kim, M. J. Ko, K. Kim, and M. H. Kim, “Ruthenium based nanostructures driven by morphological controls as efficient counter electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 17(5), 3004–3008 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

Y.-S. Li, J.-L. Liao, S.-Y. Wang, and W.-H. Chiang, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons,” Sci. Rep. 6(1), 22755 (2016).
[Crossref] [PubMed]

Small (2)

M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, “3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries,” Small 12(20), 2707–2714 (2016).
[Crossref] [PubMed]

Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao, and H. G. Yang, “Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells,” Small 10(3), 484–492 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic illustration of the fabrication process of the N-doped CNT-grafted Ru IO structure. Step1: PS opal structure is prepared by drop-casting the PS sphere solution onto Ni mesh; Step2: The PS opal structure is immersed into RuCl3 solution to fill the gaps between the PS spheres; Step 3: Calcination process produces RuO2 IO structure; Step 4: PECVD process is carried out for the growth of CNTs onto the RuO2 IO.

Fig. 2
Fig. 2

SEM image of (a) PS opal structure. SEM images of RuO2 IO structures. (b) and (c) were measured at low and high magnification, respectively. SEM images of N-doped CNT-grafted Ru IO structures taken at (d) top-down position and (e) side position

Fig. 3
Fig. 3

(a) XRD and b) Raman spectra obtained from commercially available RuO2 powder (black line, Sigma-Aldrich), RuO2 IO (red line), Ru IO (yellow line) and N-doped CNT-grafted Ru IO (blue line) structures grown on Ni mesh. The asterisk, circle, triangle and square marks in Fig. 3(a) are assigned to the signals from Ni, tetragonal RuO2, cubic RuO2 and metallic Ru, respectively. In Fig. 3(b), the four samples exhibited Eg, A1g and B2g bands and only N-doped CNT-grafted Ru IO showed D, G and 2D bands.

Metrics