Abstract

High-quality silicon nitride (Si3N4) films with a low stress and optical loss were deposited at low temperature (150°C) using liquid source chemical vapor deposition (LSCVD). The refractive index of the Si3N4 film was optimized by changing the composition ratio and deposition temperature. An integrated photonic structure of micro-ring resonator based on the as-deposited Si3N4 layer has been demonstrated to exemplify its viability as a photonic integration platform. Bragg gratings are fabricated at both ends of the bus waveguide to improve coupling efficiency and testing flexibility. A measured waveguide loss of 2.9 dB/cm and a high Q-factor of 5.2 × 104 are achieved. The LSCVD deposited Si3N4 is therefore a highly promising photonic integration platform for various integrated photonic applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high quality factor planar Si3N4 ring resonators on Si substrates

Ming-Chun Tien, Jared F. Bauters, Martijn J. R. Heck, Daryl T. Spencer, Daniel J. Blumenthal, and John E. Bowers
Opt. Express 19(14) 13551-13556 (2011)

Ultra-low temperature silicon nitride photonic integration platform

Zengkai Shao, Yujie Chen, Hui Chen, Yanfeng Zhang, Fangxing Zhang, Jian Jian, Zeming Fan, Lin Liu, Chunchuan Yang, Lidan Zhou, and Siyuan Yu
Opt. Express 24(3) 1865-1872 (2016)

Overcoming Si3N4 film stress limitations for high quality factor ring resonators

Kevin Luke, Avik Dutt, Carl B. Poitras, and Michal Lipson
Opt. Express 21(19) 22829-22833 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  2. R. Baets, A. Z. Subramanian, S. P. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. N. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon Photonics: silicon nitride versus silicon-on-insulator,” Optical Fiber Communications Conference and Exhibition, (IEEE. 2016), pp. 1–3.
  3. Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
    [Crossref] [PubMed]
  4. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
    [Crossref] [PubMed]
  5. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  6. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  7. W. D. Sacher and J. K. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008).
    [Crossref] [PubMed]
  8. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [Crossref] [PubMed]
  9. M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
    [Crossref] [PubMed]
  10. D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE. J. Sel. Top. Quant. 8(6), 1405–1411 (2002).
    [Crossref]
  11. O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
    [Crossref]
  12. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]
  13. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
    [Crossref] [PubMed]
  14. H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
    [Crossref] [PubMed]
  15. Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
    [Crossref]
  16. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  17. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the Visible Wavelength Range,” Opt. Express 17(17), 14543–14551 (2009).
    [Crossref] [PubMed]
  18. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  19. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  20. S. Sriram, W. D. Partlow, and C. S. Liu, “Low-loss optical waveguides using plasma-deposited silicon nitride,” Appl. Opt. 22(23), 3664–3665 (1983).
    [Crossref] [PubMed]
  21. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
    [Crossref]
  22. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829–22833 (2013).
    [Crossref] [PubMed]
  23. J. C. Wirth, “Silicon grating couplers for low loss coupling between optical fiber and silicon nanowires,” (Purdue University West Lafayette, 2011).
  24. J. S. Levy, “Integrated nonlinear optics in silicon nitride waveguides and resonators,” (Cornell University Citeseer, 2011).
  25. K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23(10), 2194–2199 (2006).
    [Crossref]

2016 (1)

2015 (1)

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
[Crossref] [PubMed]

2013 (4)

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2010 (1)

2009 (2)

2008 (3)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

2002 (1)

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE. J. Sel. Top. Quant. 8(6), 1405–1411 (2002).
[Crossref]

1983 (1)

Adibi, A.

Alic, N.

Atabaki, A. H.

Ay, F.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

Aydinli, A.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Beausoleil, R. G.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Campanella, C. E.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
[Crossref] [PubMed]

Charbonnier, B.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Chen, C. H.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Chen, H.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Chen, L.

Chen, Y.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Leonardis, F.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
[Crossref] [PubMed]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Descos, A.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Dong, B.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
[Crossref] [PubMed]

Dubray, O.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dutt, A.

Fainman, Y.

Fan, Z.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Finkelstein, H.

Fiorentino, M.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Gondarenko, A.

Hamacher, M.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE. J. Sel. Top. Quant. 8(6), 1405–1411 (2002).
[Crossref]

Heidrich, H.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE. J. Sel. Top. Quant. 8(6), 1405–1411 (2002).
[Crossref]

Hosseini, E. S.

Ikeda, K.

Jian, J.

Khan, M. H.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kwong, D. L.

La Notte, M.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
[Crossref] [PubMed]

Levy, J. S.

Li, H.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
[Crossref] [PubMed]

Lipson, M.

Liu, C. S.

Liu, L.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Lo, G. Q.

Luke, K.

Menezo, S.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Merget, F.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Muciaccia, T.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
[Crossref] [PubMed]

Partlow, W. D.

Passaro, V. M.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
[Crossref] [PubMed]

Poitras, C. B.

Poon, J. K.

Qi, M.

Rabus, D. G.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE. J. Sel. Top. Quant. 8(6), 1405–1411 (2002).
[Crossref]

Robinson, J. T.

Romero-García, S.

Sacher, W. D.

Saperstein, R. E.

Seyedi, M. A.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

Shao, Z.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Shen, H.

Soltani, M.

Sriram, S.

Sun, C.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
[Crossref] [PubMed]

Tomita, M.

Totsuka, K.

Troia, B.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
[Crossref] [PubMed]

Troppenz, U.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE. J. Sel. Top. Quant. 8(6), 1405–1411 (2002).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Witzens, J.

Xiao, S.

Yang, C.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Yegnanarayanan, S.

Yu, S.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Zhang, F.

Zhang, H. F.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
[Crossref] [PubMed]

Zhang, Y.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Zhang, Z.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
[Crossref] [PubMed]

Zhong, F.

Zhou, L.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

Zhu, S.

Appl. Opt. (1)

IEEE. J. Sel. Top. Quant. (1)

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE. J. Sel. Top. Quant. 8(6), 1405–1411 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Opt. Express (11)

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829–22833 (2013).
[Crossref] [PubMed]

W. D. Sacher and J. K. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008).
[Crossref] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the Visible Wavelength Range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
[Crossref] [PubMed]

Opt. Mater. (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

Sci. Rep. (1)

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(1), 4496 (2015).
[Crossref] [PubMed]

Other (6)

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Liu, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), pp. u1B-u2B.
[Crossref]

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” Optical Interconnects Conference, (IEEE, 2016), pp 6–7.
[Crossref]

R. Baets, A. Z. Subramanian, S. P. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. N. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon Photonics: silicon nitride versus silicon-on-insulator,” Optical Fiber Communications Conference and Exhibition, (IEEE. 2016), pp. 1–3.

M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, and V. M. Passaro, “Recent advances in gas and chemical detection by Vernier effect-based photonic sensors,” Sensors (Basel)14(3), 4831–4855 (2014) (basel).
[Crossref] [PubMed]

J. C. Wirth, “Silicon grating couplers for low loss coupling between optical fiber and silicon nanowires,” (Purdue University West Lafayette, 2011).

J. S. Levy, “Integrated nonlinear optics in silicon nitride waveguides and resonators,” (Cornell University Citeseer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of fabrication process.
Fig. 2
Fig. 2 SEM micrograph of the fabricated Si3N4 waveguide. (a) Top view; (b) Enlarged view of the coupling region; (c) Cross section.
Fig. 3
Fig. 3 (a) Simulated field distribution of the waveguide grating coupler by FDTD; (b) Dependence of coupling efficiency on slot width; (c) Dependence of coupling efficiency on grating period; (d) SEM micrograph of fabricated waveguide grating coupler.
Fig. 4
Fig. 4 (a) Propagation loss of waveguides with a 2 μm width; (b) Measured normalized intensity of grating coupler versus wavelength.
Fig. 5
Fig. 5 (a) Transmission spectrum of the ring resonator with various gaps from 0.1 μm to 0.2 μm with a radius of 100 μm; (b) High transmission spectrum of the ring resonator (G = 0.2 μm) showing a Q factor of 5.2 × 104.

Metrics