Abstract

A compact fiber-optic Fabry-Perot interferometric (FFPI) volatile organic compounds (VOCs) sensor is fabricated based on a single mode fiber (SMF) and a polymethyl methacrylate (PMMA) film. The VOCs induce the swelling effect and refractive index changes of PMMA film. The swelling of PMMA film affects the cavity length of Fabry-Perot interferometer resulting in shift of resonant dip, while the change in refractive index influences reflection resulting in change of extinction ratio (ER). The sensitivities of 2.7 pm/ppm for ethanol and 2.17 pm/ppm for acetone are achieved. Moreover, this sensor is insensitive to the inorganic gases. In addition, it has the advantages of ease of fabrication and high sensitivity to VOCs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
PDMS-coated fiber volatile organic compounds sensors

Xiangping Ning, Jingyi Yang, Chun Liu Zhao, and Chi Chiu Chan
Appl. Opt. 55(13) 3543-3548 (2016)

Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing

Rajesh Kanawade, Ajay Kumar, Dnyandeo Pawar, Kaushal Vairagi, Dattatray Late, Sudipta Sarkar, Ravindra K. Sinha, and Samir Mondal
Opt. Express 27(5) 7277-7290 (2019)

Fiber optic Fabry–Perot interferometer sensor: an efficient and fast approach for ammonia gas sensing

Rajesh Kanawade, Ajay Kumar, Dnyandeo Pawar, Dattatray Late, Samir Mondal, and Ravindra K. Sinha
J. Opt. Soc. Am. B 36(3) 684-689 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
    [Crossref]
  2. S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
    [Crossref]
  3. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
    [Crossref]
  4. C. H. Lin, S. J. Chang, and T. J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3(9), 095002 (2016).
    [Crossref]
  5. L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
    [Crossref]
  6. H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
    [Crossref]
  7. S. Park, G. J. Sun, H. Kheel, and C. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc. 69(3), 373–380 (2016).
    [Crossref]
  8. Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
    [Crossref]
  9. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [Crossref]
  10. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
    [Crossref]
  11. B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
    [Crossref] [PubMed]
  12. Y. Gong, C. B. Yu, T. T. Wang, X. P. Liu, Y. Wu, Y. J. Rao, M. L. Zhang, H. J. Wu, X. X. Chen, and G. D. Peng, “Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer,” Opt. Express 22(3), 3578–3584 (2014).
    [Crossref] [PubMed]
  13. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  14. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [Crossref] [PubMed]
  15. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
    [Crossref]
  16. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  17. X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
    [Crossref]
  18. Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express 18(15), 15383–15388 (2010).
    [Crossref] [PubMed]
  19. B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
    [Crossref]
  20. G. L. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
    [Crossref]
  21. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  22. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [Crossref] [PubMed]
  23. P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
    [Crossref]
  24. Z. L. Poole, P. Ohodnicki, R. Chen, Y. Lin, and K. P. Chen, “Engineering metal oxide nanostructures for the fiber optic sensor platform,” Opt. Express 22(3), 2665–2674 (2014).
    [Crossref] [PubMed]
  25. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
    [Crossref] [PubMed]
  26. H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
    [Crossref]
  27. C. B. Yu, Y. Wu, X. L. Liu, B. C. Yao, F. Fu, Y. Gong, Y. J. Rao, and Y. F. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6(3), 727–733 (2016).
    [Crossref]
  28. S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
    [Crossref]
  29. S. Masuzawa, S. Okazaki, Y. Maru, and T. Mizutani, “Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings,” Sens. Actuators B Chem. 217, 151–157 (2015).
    [Crossref]
  30. Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
    [Crossref]
  31. R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
    [Crossref]
  32. S. Piccarolo and G. Titomanlio, “Synergism in the swelling and solubility of poly (methyl methacrylate) in presence of ethanol/water mixtures,” Makromol. Chem., Rapid Cornmun. 3(6), 383–387 (1982).
    [Crossref]
  33. U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
    [Crossref]
  34. M. Latinoa, R. Montaninia, N. Donatoc, and G. Neri, “Ethanol sensing properties of PMMA-coated fiber Bragg grating,” Prod. Eng. 47, 1263–1266 (2012).
    [Crossref]
  35. Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
    [Crossref]
  36. M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
    [Crossref] [PubMed]
  37. J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
    [Crossref]

2016 (4)

C. H. Lin, S. J. Chang, and T. J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3(9), 095002 (2016).
[Crossref]

S. Park, G. J. Sun, H. Kheel, and C. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc. 69(3), 373–380 (2016).
[Crossref]

C. B. Yu, Y. Wu, X. L. Liu, B. C. Yao, F. Fu, Y. Gong, Y. J. Rao, and Y. F. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6(3), 727–733 (2016).
[Crossref]

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

2015 (4)

S. Masuzawa, S. Okazaki, Y. Maru, and T. Mizutani, “Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings,” Sens. Actuators B Chem. 217, 151–157 (2015).
[Crossref]

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref] [PubMed]

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
[Crossref]

2014 (6)

Y. Gong, C. B. Yu, T. T. Wang, X. P. Liu, Y. Wu, Y. J. Rao, M. L. Zhang, H. J. Wu, X. X. Chen, and G. D. Peng, “Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer,” Opt. Express 22(3), 3578–3584 (2014).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Z. L. Poole, P. Ohodnicki, R. Chen, Y. Lin, and K. P. Chen, “Engineering metal oxide nanostructures for the fiber optic sensor platform,” Opt. Express 22(3), 2665–2674 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

2013 (3)

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

G. L. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

2012 (3)

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

M. Latinoa, R. Montaninia, N. Donatoc, and G. Neri, “Ethanol sensing properties of PMMA-coated fiber Bragg grating,” Prod. Eng. 47, 1263–1266 (2012).
[Crossref]

2011 (3)

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

2010 (5)

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
[Crossref] [PubMed]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express 18(15), 15383–15388 (2010).
[Crossref] [PubMed]

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

2004 (2)

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

2002 (1)

U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
[Crossref]

1999 (1)

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[Crossref]

1997 (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

1982 (1)

S. Piccarolo and G. Titomanlio, “Synergism in the swelling and solubility of poly (methyl methacrylate) in presence of ethanol/water mixtures,” Makromol. Chem., Rapid Cornmun. 3(6), 383–387 (1982).
[Crossref]

Abraham, J. K.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Ahn, H.

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

Aichele, C.

Alberto, N. J.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

An, S.

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

André, P. S.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Antunes, P. F. C.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Asokan, S.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Ballauff, M.

U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
[Crossref]

Barnes, J. A.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Berger, T.

U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
[Crossref]

Bhat, N.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Bierlich, J.

Brown, R. S.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Chang, S. J.

C. H. Lin, S. J. Chang, and T. J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3(9), 095002 (2016).
[Crossref]

Chen, K. P.

Chen, R.

Chen, W. G.

W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
[Crossref]

Chen, X. X.

Chen, Y. F.

Chen, Y. J.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Cheng, G. H.

Cheng, M. M.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Cheng, Y.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Chiang, K. S.

Chow, K. K.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Deng, M.

Deng, Y.

Domingues, M. F. F.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Donatoc, N.

M. Latinoa, R. Montaninia, N. Donatoc, and G. Neri, “Ethanol sensing properties of PMMA-coated fiber Bragg grating,” Prod. Eng. 47, 1263–1266 (2012).
[Crossref]

Duan, D. W.

Eggleton, B. J.

Fehrenbacher, U.

U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
[Crossref]

Feng, J.

Ferreira, M. S.

Frazão, O.

Fu, F.

Gao, Y.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Gelais, R. S.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Geng, Y.

Gong, Y.

C. B. Yu, Y. Wu, X. L. Liu, B. C. Yao, F. Fu, Y. Gong, Y. J. Rao, and Y. F. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6(3), 727–733 (2016).
[Crossref]

Y. Gong, C. B. Yu, T. T. Wang, X. P. Liu, Y. Wu, Y. J. Rao, M. L. Zhang, H. J. Wu, X. X. Chen, and G. D. Peng, “Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer,” Opt. Express 22(3), 3578–3584 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

Gu, B.

Guo, Y.

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

He, S.

He, X. L.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Hong, X.

Hotte, A. L.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Hsueh, T. J.

C. H. Lin, S. J. Chang, and T. J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3(9), 095002 (2016).
[Crossref]

Huang, W. P.

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

Jakob, T.

U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
[Crossref]

Jee, S. H.

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

Ji, W. B.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Jin, C.

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

Jun, D. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Kang, Y. F.

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

Kheel, H.

S. Park, G. J. Sun, H. Kheel, and C. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc. 69(3), 373–380 (2016).
[Crossref]

Kim, D. J.

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

Kim, S. B.

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

Knoll, W.

U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
[Crossref]

Ko, H.

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

Kobelke, J.

Kou, J. L.

Kuhlmey, B. T.

Latinoa, M.

M. Latinoa, R. Montaninia, N. Donatoc, and G. Neri, “Ethanol sensing properties of PMMA-coated fiber Bragg grating,” Prod. Eng. 47, 1263–1266 (2012).
[Crossref]

Lee, C.

S. Park, G. J. Sun, H. Kheel, and C. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc. 69(3), 373–380 (2016).
[Crossref]

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

Lee, W. I.

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

Leviatan, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, C. M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, J. P.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Li, Q. H.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Li, T. M.

W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
[Crossref]

Li, X.

Li, Z. Y.

W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
[Crossref]

Liang, X. H.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Lim, A.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Lin, C. H.

C. H. Lin, S. J. Chang, and T. J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3(9), 095002 (2016).
[Crossref]

Lin, C. L.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Lin, Y.

Liu, F. M.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Liu, H. H.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Liu, X. H.

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

Liu, X. L.

Liu, X. P.

Liu, Y.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Loock, H. P.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Lou, S. Q.

G. L. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Lu, G. Y.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Lu, Y. Q.

Mackey, G.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Maru, Y.

S. Masuzawa, S. Okazaki, Y. Maru, and T. Mizutani, “Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings,” Sens. Actuators B Chem. 217, 151–157 (2015).
[Crossref]

Masuzawa, S.

S. Masuzawa, S. Okazaki, Y. Maru, and T. Mizutani, “Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings,” Sens. Actuators B Chem. 217, 151–157 (2015).
[Crossref]

Mizutani, T.

S. Masuzawa, S. Okazaki, Y. Maru, and T. Mizutani, “Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings,” Sens. Actuators B Chem. 217, 151–157 (2015).
[Crossref]

Montaninia, R.

M. Latinoa, R. Montaninia, N. Donatoc, and G. Neri, “Ethanol sensing properties of PMMA-coated fiber Bragg grating,” Prod. Eng. 47, 1263–1266 (2012).
[Crossref]

Neri, G.

M. Latinoa, R. Montaninia, N. Donatoc, and G. Neri, “Ethanol sensing properties of PMMA-coated fiber Bragg grating,” Prod. Eng. 47, 1263–1266 (2012).
[Crossref]

Ohodnicki, P.

Okazaki, S.

S. Masuzawa, S. Okazaki, Y. Maru, and T. Mizutani, “Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings,” Sens. Actuators B Chem. 217, 151–157 (2015).
[Crossref]

Pan, S. S.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Park, J. H.

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

Park, S.

S. Park, G. J. Sun, H. Kheel, and C. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc. 69(3), 373–380 (2016).
[Crossref]

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

Peng, G. D.

Peter, Y. A.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Philip, B.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Piccarolo, S.

S. Piccarolo and G. Titomanlio, “Synergism in the swelling and solubility of poly (methyl methacrylate) in presence of ethanol/water mixtures,” Makromol. Chem., Rapid Cornmun. 3(6), 383–387 (1982).
[Crossref]

Poole, Z. L.

Poulin, A.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Qian, J.

Rao, Y. J.

C. B. Yu, Y. Wu, X. L. Liu, B. C. Yao, F. Fu, Y. Gong, Y. J. Rao, and Y. F. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6(3), 727–733 (2016).
[Crossref]

Y. Gong, C. B. Yu, T. T. Wang, X. P. Liu, Y. Wu, Y. J. Rao, M. L. Zhang, H. J. Wu, X. X. Chen, and G. D. Peng, “Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer,” Opt. Express 22(3), 3578–3584 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref] [PubMed]

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[Crossref]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Reddy, C. C.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Roriz, P.

Santos, J. L.

Saunders, J.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Schuster, K.

Shum, P.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Song, K.

Sood, A. K.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Sridevi, S.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Sun, G. J.

S. Park, G. J. Sun, H. Kheel, and C. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc. 69(3), 373–380 (2016).
[Crossref]

Sun, P.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Titomanlio, G.

S. Piccarolo and G. Titomanlio, “Synergism in the swelling and solubility of poly (methyl methacrylate) in presence of ethanol/water mixtures,” Makromol. Chem., Rapid Cornmun. 3(6), 383–387 (1982).
[Crossref]

Tjin, S. C.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Tong, L.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Tong, W.

Varadan, V. K.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Vasu, K. S.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Wan, Q.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Wang, L. W.

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

Wang, Q. J.

Wang, S. R.

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

Wang, T. H.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Wang, T. T.

Wang, Y.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Wang, Z. G.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Wei, H.

Witchurch, A.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Wondraczek, K.

Wu, D. K. C.

Wu, H. J.

Wu, Y.

C. B. Yu, Y. Wu, X. L. Liu, B. C. Yao, F. Fu, Y. Gong, Y. J. Rao, and Y. F. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6(3), 727–733 (2016).
[Crossref]

Y. Gong, C. B. Yu, T. T. Wang, X. P. Liu, Y. Wu, Y. J. Rao, M. L. Zhang, H. J. Wu, X. X. Chen, and G. D. Peng, “Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer,” Opt. Express 22(3), 3578–3584 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

Xu, F.

Yan, M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Yang, J. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yang, Q. Y.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Yang, S. S.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yang, X. C.

Yao, B. C.

Yao, S. T.

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Yin, G. L.

G. L. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Yin, M.

Yoon, H. J.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yoon, Y. S.

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

Yu, C. B.

Yu, X.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Yu, Y.

Zeng, W.

W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
[Crossref]

Zhang, A. P.

Zhang, A. Q.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Zhang, H.

W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
[Crossref]

Zhang, M. L.

Zhang, S. M.

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

Zhang, T. H.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

Zhang, W. L.

Zhang, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Zhao, T.

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

Zhou, J. J.

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

Zhou, Z. X.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Zhu, T.

Zou, H.

G. L. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Appl. Phys. Lett. (1)

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Electrochem. Solid-State Lett. (1)

H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett. 13(11), J125–J128 (2010).
[Crossref]

Fluid Phase Equilib. (1)

U. Fehrenbacher, T. Jakob, T. Berger, W. Knoll, and M. Ballauff, “Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures,” Fluid Phase Equilib. 200(1), 147–160 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

J. Korean Phys. Soc. (1)

S. Park, G. J. Sun, H. Kheel, and C. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc. 69(3), 373–380 (2016).
[Crossref]

J. Opt. (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

S. An, S. Park, H. Ko, C. Jin, W. I. Lee, and C. Lee, “Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors,” J. Phys. Chem. Solids 74(7), 979–984 (2013).
[Crossref]

Makromol. Chem., Rapid Cornmun. (1)

S. Piccarolo and G. Titomanlio, “Synergism in the swelling and solubility of poly (methyl methacrylate) in presence of ethanol/water mixtures,” Makromol. Chem., Rapid Cornmun. 3(6), 383–387 (1982).
[Crossref]

Mater. Res. Bull. (1)

W. Zeng, W. G. Chen, Z. Y. Li, H. Zhang, and T. M. Li, “Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsion-electrospinning route,” Mater. Res. Bull. 65, 157–162 (2015).
[Crossref]

Mater. Res. Express (1)

C. H. Lin, S. J. Chang, and T. J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3(9), 095002 (2016).
[Crossref]

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Opt. Express (7)

Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref] [PubMed]

Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express 18(15), 15383–15388 (2010).
[Crossref] [PubMed]

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

Z. L. Poole, P. Ohodnicki, R. Chen, Y. Lin, and K. P. Chen, “Engineering metal oxide nanostructures for the fiber optic sensor platform,” Opt. Express 22(3), 2665–2674 (2014).
[Crossref] [PubMed]

Y. Gong, C. B. Yu, T. T. Wang, X. P. Liu, Y. Wu, Y. J. Rao, M. L. Zhang, H. J. Wu, X. X. Chen, and G. D. Peng, “Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer,” Opt. Express 22(3), 3578–3584 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Laser Technol. (1)

G. L. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Opt. Lasers Eng. (1)

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Prod. Eng. (1)

M. Latinoa, R. Montaninia, N. Donatoc, and G. Neri, “Ethanol sensing properties of PMMA-coated fiber Bragg grating,” Prod. Eng. 47, 1263–1266 (2012).
[Crossref]

RSC Advances (1)

Y. Liu, S. T. Yao, Q. Y. Yang, P. Sun, Y. Gao, X. H. Liang, F. M. Liu, and G. Y. Lu, “Highly sensitive and humidity-independent ethanol sensors based on In2O3 nanoflower/SnO2 nanoparticle composites,” RSC Advances 5(64), 52252–52258 (2015).
[Crossref]

Sens. Actuators B Chem. (7)

L. W. Wang, Y. F. Kang, X. H. Liu, S. M. Zhang, W. P. Huang, and S. R. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem. 162(1), 237–243 (2012).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

S. Masuzawa, S. Okazaki, Y. Maru, and T. Mizutani, “Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings,” Sens. Actuators B Chem. 217, 151–157 (2015).
[Crossref]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

R. S. Gelais, G. Mackey, J. Saunders, J. J. Zhou, A. L. Hotte, A. Poulin, J. A. Barnes, H. P. Loock, R. S. Brown, and Y. A. Peter, “Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers,” Sens. Actuators B Chem. 182, 45–52 (2013).
[Crossref]

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Sensors (Basel) (1)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (A) The schematic diagram of the FFPI sensor. (B) The reflective interference spectrum of the FFPI sensor.
Fig. 2
Fig. 2 The fabrication process of the FFPI sensor.
Fig. 3
Fig. 3 The experimental setup for gas sensing.
Fig. 4
Fig. 4 The experimental results of FFPI sensor for (A) ethanol, (B) acetone, (C) NH3, (D) CO and (E)H2 gas sensing.
Fig. 5
Fig. 5 (A) Dip shift and (B) ER change of the FFPI sensor as a function of the gas concentration increase. (C) The recoverability of the FFPI sensor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = I F i b e r ( λ ) + I F i l m ( λ ) + 2 I F i b e r ( λ ) I F i l m ( λ ) cos ( 2 π O P D λ ) .
E R = 10 lg I max I min = 10 lg I F i b e r ( λ ) + I F i l m ( λ ) + 2 I F i b e r ( λ ) I F i l m ( λ ) I F i b e r ( λ ) + I F i l m ( λ ) 2 I F i b e r ( λ ) I F i l m ( λ ) .

Metrics