Abstract

To explore new phosphor materials for optical temperature sensors, the Yb3+-Ho3+ and Yb3+-Er3+ doped Sr5(PO4)3Cl (SPC) phosphors were prepared by the solid-state reaction method, and their upconversion luminescence properties were investigated. Upon 980 nm excitation, three emission peaks around 543, 668, and 758 nm are found for SPC:Yb3+,Ho3+, which could be attributed to the typical Ho3+ transitions. For the SPC:Yb3+,Er3+ phosphor, the dominant emission peak is located around 673 nm and the green emission peaks are very weak. By studying the dependence of intensities on the excitation powder, all the observed emission peaks for Yb3+-Ho3+ and Yb3+-Er3+ doped SPC samples are two-photon processes. The temperature-dependence measurement reveals that the fluorescence intensity ratios of 668/543 nm emissions for Ho3+ and 522/544 nm emissions for Er3+ change with the temperature. The reason has been interpreted by the energy level diagram, decay curves and so on. The sensitivity of the present samples were evaluated with the temperature changed from 293 to 553 K, and the high sensitivities have been obtained.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical thermometry based on upconversion luminescence of Yb3+-Er3+ and Yb3+-Ho3+ doped Y6WO12 phosphors

Songsong An, Jia Zhang, and Lei Zhao
Appl. Opt. 58(27) 7451-7457 (2019)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  2. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  3. L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
    [Crossref]
  4. D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
    [Crossref]
  5. Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
    [Crossref]
  6. C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
    [Crossref]
  7. M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
    [Crossref]
  8. R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sensor. Actuat. B-Chem 210, 581–588 (2015).
  9. J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
    [Crossref]
  10. M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
    [Crossref]
  11. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
    [Crossref]
  12. S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry,” Sensor. Actuat. A-Phys. 149, 16–20 (2009).
  13. S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
    [Crossref] [PubMed]
  14. T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
    [Crossref]

2016 (1)

M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
[Crossref]

2015 (1)

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sensor. Actuat. B-Chem 210, 581–588 (2015).

2014 (2)

L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
[Crossref]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
[Crossref]

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

2012 (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

2011 (3)

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

2009 (3)

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry,” Sensor. Actuat. A-Phys. 149, 16–20 (2009).

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

1997 (1)

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

Agrawal, D. K.

L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
[Crossref]

Akash, R.

M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
[Crossref]

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

Anpo, M.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

Brites, C. D. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Carlos, L. D.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

Chen, W.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Cusso, F.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Deng, Y.

Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
[Crossref]

Dey, R.

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sensor. Actuat. B-Chem 210, 581–588 (2015).

Ding, X.

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Fang, X.

Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
[Crossref]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Fujii, T.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

Gao, F.

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Guo, C.

L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
[Crossref]

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Guo, L.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

Guo, Q.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Huang, J.

Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
[Crossref]

Huang, Y.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

Jiang, S.

L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
[Crossref]

Jiang, W.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Kawauchi, O.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

Kodaira, K.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

Kodama, N.

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Kumar, K.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry,” Sensor. Actuat. A-Phys. 149, 16–20 (2009).

Kumari, A.

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sensor. Actuat. B-Chem 210, 581–588 (2015).

Li, L.

L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
[Crossref]

Li, T.

L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
[Crossref]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Liang, L.

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

Liu, B.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

Liu, X.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Luan, L.

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Millan, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

Mondal, M.

M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
[Crossref]

Palaciob, F.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

Qiu, J.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Quintanilla, M.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Rai, S. B.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry,” Sensor. Actuat. A-Phys. 149, 16–20 (2009).

Rai, V. K.

M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
[Crossref]

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sensor. Actuat. B-Chem 210, 581–588 (2015).

Sarkar, S.

M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
[Crossref]

Shi, F. G.

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

Singh, S. K.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry,” Sensor. Actuat. A-Phys. 149, 16–20 (2009).

Soni, A. K.

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sensor. Actuat. B-Chem 210, 581–588 (2015).

Srivastava, C.

M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
[Crossref]

Tan, D.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Tanaka, N.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Wang, D. Y.

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wang, Y.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

Wen, Y.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Xu, C.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Yamashita, H.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

Yi, S.

Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
[Crossref]

Zhang, F.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Zhang, J.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

Zhao, W.

Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
[Crossref]

Zheng, S.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Zhou, J.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, and L. Liang, “Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs,” Appl. Phys. B 95(4), 779–785 (2009).
[Crossref]

Appl. Phys. Express (1)

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Mondal, V. K. Rai, C. Srivastava, S. Sarkar, and R. Akash, “Enhanced frequency upconversion in Ho3+/Yb3+/Li+:YMoO4 nanophosphors for photonic and security ink applications,” J. Appl. Phys. 120(23), 233101 (2016).
[Crossref]

J. Phys. Chem. B (1)

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses prepared by the sol−gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[Crossref]

J. Rare Earths (1)

Y. Deng, S. Yi, J. Huang, W. Zhao, and X. Fang, “A novel long lasting phosphor Sr5(PO4)3FxCl1-x:Eu2+, Gd3+ prepared in air condition,” J. Rare Earths 31(10), 962–968 (2013).
[Crossref]

J. Solid State Chem. (2)

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3:Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[Crossref]

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 2178–2183 (2011).
[Crossref]

Nanoscale (1)

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

New J. Chem. (1)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palaciob, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35(6), 1177–1183 (2011).
[Crossref]

RSC Advances (1)

L. Li, C. Guo, S. Jiang, D. K. Agrawal, and T. Li, “Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing,” RSC Advances 4(13), 6391–6396 (2014).
[Crossref]

Sensor. Actuat. A-Phys. (1)

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry,” Sensor. Actuat. A-Phys. 149, 16–20 (2009).

Sensor. Actuat. B-Chem (1)

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sensor. Actuat. B-Chem 210, 581–588 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 XRD patterns of SPC:Yb3+,Er3+ and SPC:Yb3+,Ho3+.
Fig. 2
Fig. 2 Emission spectra of (a) SPC:Yb3+,Ho3+ and (b) SPC:Yb3+,Er3+ under various LD excitation powers, inset shows the dependence of UC emission intensities on excitation powder.
Fig. 3
Fig. 3 (a) Emission spectra of SPC:Yb3+,Ho3+ at various temperatures; (b) normalized emission spectra of SPC:Yb3+,Ho3+ at various temperatures; (c) dependence of FIR for the 668 and 543 nm emissions of SPC:Yb3+,Ho3+ on the absolute temperature; (d) sensitivity as a function of the temperature of 293 to 553 K for SPC:Yb3+,Ho3+.
Fig. 4
Fig. 4 (a) Emission spectra of SPC:Yb3+,Er3+ at various temperatures; (b) normalized emission spectra of SPC:Yb3+,Er3+; (c) dependence of FIR for the 522 and 544 nm emissions on the absolute temperature; (d) sensitivity as a function of the temperature from 293 to 553 K.
Fig. 5
Fig. 5 (a) Schematic representation of the energy level diagram for Yb3+-Ho3+; (b) decay curves of SPC:Yb3+,Ho3+ under the temperatures of 293 and 433 K.

Tables (1)

Tables Icon

Table 1 τi and Ai (i = 1, 2) values of the decay curves for SPC:Yb3+,Ho3+ with 980 nm excitation and 543 nm emission under the temperatures of 293 and 433 K

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S=dR/dT
R=Nexp( ΔE KT )

Metrics