Abstract

Gel polymer electrolytes (GPEs) based on poly(ethylene oxide) (PEO) and phthaloyl chitosan (PhCh) for dye-sensitized solar cells (DSSCs) have been synthesized and characterized. The GPEs have been prepared using different weight fractions of PEO and PhCh that have been added to a fixed composition solution of tetrapropylammonium iodide (TPAI), dimethylformamide (DMF) and iodine (I2) crystals. The ionic conductivity behavior of prepared GPEs was studied using impedance spectroscopy. The sample having 70 wt.% PEO and 30 wt.% PhCh showed the highest ionic conductivity of 7.36 mS cm−1 at room temperature. The photoanode of the DSSC consists of two TiO2 layers. The first or compact layer has a thickness of ~5 μm and the TiO2 nanoparticles have an average size of 14 nm. The second layer of TiO2 nanoparticles has an average size of 21 nm. In order to adsorb dye molecules, the TiO2 photoanodes were soaked in anthocyanin and ruthenium 535 (N3) dye solutions. The GPE has been deposited between the dye/TiO2 photoanode and platinum (Pt) counter electrode in a sandwich-like structure. Results showed that the fabricated DSSC with an electrolyte containing 70 wt.% PEO:30 wt.% PhCh exhibited the highest efficiency for both anthocyanin and N3 dyes and the efficiency and ionic conductivity trend versus PEO content are similar. On addition of different amounts of Ag nanoparticles (0, 10, 20, 30, 40 µL), with average size of 10 nm to the second TiO2 layer, the performance of DSSCs with anthocyanin sensitizer and N3 dye improved. The cell with anthocyanin/(TiO2 + 10 µL Ag nanoparticles) showed a 21%, 17.2% and 39.6% increase in short circuit current density (Jsc), fill factor (FF), and light to electricity conversion efficiency (η) respectively compared to the cell without Ag nanoparticle. The DSSC fabricated with TiO2 photoanode containing 20 µL Ag nanoparticles soaked in N3 dye exhibits Jsc, FF, and η of 15.24 mA cm−2, 57% and 5.21% respectively. The incorporation of Ag nanoparticles has resulted in a 17% and 13% increase in Jsc, and η, respectively, for N3 based cells. This performance enhancement with the addition of Ag nanoparticles can be attributed to improvement of light scattering and charge transport as a result of plasmonic resonance.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells

Qi Xu, Fang Liu, Weisi Meng, and Yidong Huang
Opt. Express 20(S6) A898-A907 (2012)

Liquid crystal-doped liquid electrolytes for dye-sensitized solar cell applications

Chi-Yen Huang, Chang-Feng You, Cheng-En Cheng, Bi-Cheng Lei, Jia-Cih Jhang, Fang-Cheng Yu, Chen-Shiung Chang, and Forest Shih Sen Chien
Opt. Mater. Express 6(4) 1024-1031 (2016)

Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells

Qi Xu, Fang Liu, Yuxiang Liu, Weisi Meng, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang
Opt. Express 22(S2) A301-A310 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Bella and R. Bongiovanni, “Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 16, 1–21 (2013).
    [Crossref]
  2. N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
    [Crossref] [PubMed]
  3. Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dyesensitized solar cells,” Nano Today 6(1), 91–109 (2011).
    [Crossref]
  4. D. Eli, M.S. Ahmad, A.B. Bikimi, and O.A. Babatunde, “Plasmonic dye sensitized solar cells incorporated with TiO2-Ag nanostructures,” International Research Journal of Pure and Applied Chemistry 11(3), 1–7 (2016).
    [Crossref]
  5. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 4(2), 145–153 (2003).
    [Crossref]
  6. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
    [Crossref]
  7. K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
    [Crossref] [PubMed]
  8. K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
    [Crossref]
  9. T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
    [Crossref]
  10. L. Wang, H. Zhang, C. Wang, and T. Ma, “Highly stable gel-state dye-sensitized solar cells based on high soluble polyvinyl acetate,” ACS Sustain. Chem.& Eng. 1(2), 205–208 (2013).
    [Crossref]
  11. X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
    [Crossref]
  12. Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
    [Crossref]
  13. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
    [Crossref] [PubMed]
  14. M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, “Review on polymer electrolyte in dye-sensitized solar cells (DSSCs),” Sol. Energy 115, 452–470 (2015).
    [Crossref]
  15. H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
    [Crossref]
  16. D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
    [Crossref]
  17. T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
    [Crossref]
  18. T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
    [Crossref]
  19. Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
    [Crossref]
  20. S.N.F. Yusuf, M.F. Aziz, H.C. Hassan, T.M.W.J. Bandara, B.-E. Mellander, M.A. Careem, A.K. Arof, “Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells,” J. Chem. 2014, 783023 (2014).
    [Crossref]
  21. A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
    [Crossref]
  22. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
    [Crossref] [PubMed]
  23. A. M. Stephan, “Review on gel polymer electrolytes for lithium batteries,” Eur. Polym. J. 42(1), 21–42 (2006).
    [Crossref]
  24. A. M. Stephan and K. S. Nahm, “Review on composite polymer electrolytes for lithium batteries,” Polymer (Guildf.) 47(16), 5952–5964 (2006).
    [Crossref]
  25. C. Sequeira, and D. Santos, Polymer Electrolytes: Fundamentals and Applications (Elsevier, Woodhead Publishing, 2010).
  26. N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
    [Crossref]
  27. L. L. Li and E. W. G. Diau, “Porphyrin-sensitized solar cells,” Chem. Soc. Rev. 42(1), 291–304 (2013).
    [Crossref] [PubMed]
  28. Y. Qin and Q. Peng, “Ruthenium sensitizers and their applications in dye-sensitized solar cells,” Int. J. Photoenergy 2012(291579), 1–21 (2012).
    [Crossref]
  29. P. Mandal and S. Sharma, “Progress in plasmonic solar cell efficiency improvement: A status review,” J. Renew. Sustain. Energ. 65, 537–552 (2016).
    [Crossref]
  30. T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
    [Crossref]
  31. Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
    [Crossref] [PubMed]
  32. T. C. Wen and W. C. Chen, “Blending thermoplastic polyurethanes and poly(ethylene oxide) for composite electrolytes via a mixture design approach,” J. Appl. Polym. Sci. 77(3), 680–692 (2000).
    [Crossref]
  33. D. R. Paul, “Polymer blends,” (Vol. 1), Elsevier (2012).
  34. I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
    [Crossref]
  35. G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” J. Renew. Sustain. Energ. 69, 705–718 (2017).
    [Crossref]
  36. Y. Qin, and Q. Peng, “Ruthenium sensitizers and their applications in dye-sensitized solar cells,” Int. J. Photoenergy 2012, 291579 (2012).
    [Crossref]
  37. Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
    [Crossref]
  38. S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation,” Int. J. Photoenergy 2012, 851705 (2014).
  39. A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, “A method based on impedance spectroscopy to determine transport properties of polymer electrolytes,” Phys. Chem. Chem. Phys. 16(5), 1856–1867 (2014).
    [Crossref] [PubMed]
  40. S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
    [Crossref]
  41. S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, “Enhanced photovoltaic performance of silver @ titania plasmonic photoanode in dye-sensitized solar cells,” RSC Advances 4(72), 38111–38118 (2014).
    [Crossref]
  42. B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
    [Crossref] [PubMed]
  43. R.-Y. Yang, H.-Y. Chen, and F.-D. Lai, “Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes,” Adv. Mater. Sci. Eng. 2012, 1 (2012).
    [Crossref]
  44. N. Ghobadi, “Band gap determination using absorption spectrum fitting procedure,” Int. Nano Lett. 3(1), 2 (2013).
    [Crossref]
  45. L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
    [Crossref]
  46. H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
    [Crossref]
  47. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
    [Crossref] [PubMed]
  48. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]

2017 (1)

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” J. Renew. Sustain. Energ. 69, 705–718 (2017).
[Crossref]

2016 (3)

P. Mandal and S. Sharma, “Progress in plasmonic solar cell efficiency improvement: A status review,” J. Renew. Sustain. Energ. 65, 537–552 (2016).
[Crossref]

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

2015 (6)

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, “Review on polymer electrolyte in dye-sensitized solar cells (DSSCs),” Sol. Energy 115, 452–470 (2015).
[Crossref]

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

2014 (9)

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation,” Int. J. Photoenergy 2012, 851705 (2014).

A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, “A method based on impedance spectroscopy to determine transport properties of polymer electrolytes,” Phys. Chem. Chem. Phys. 16(5), 1856–1867 (2014).
[Crossref] [PubMed]

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, “Enhanced photovoltaic performance of silver @ titania plasmonic photoanode in dye-sensitized solar cells,” RSC Advances 4(72), 38111–38118 (2014).
[Crossref]

K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
[Crossref]

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

2013 (4)

N. Ghobadi, “Band gap determination using absorption spectrum fitting procedure,” Int. Nano Lett. 3(1), 2 (2013).
[Crossref]

L. Wang, H. Zhang, C. Wang, and T. Ma, “Highly stable gel-state dye-sensitized solar cells based on high soluble polyvinyl acetate,” ACS Sustain. Chem.& Eng. 1(2), 205–208 (2013).
[Crossref]

F. Bella and R. Bongiovanni, “Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 16, 1–21 (2013).
[Crossref]

L. L. Li and E. W. G. Diau, “Porphyrin-sensitized solar cells,” Chem. Soc. Rev. 42(1), 291–304 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Qin and Q. Peng, “Ruthenium sensitizers and their applications in dye-sensitized solar cells,” Int. J. Photoenergy 2012(291579), 1–21 (2012).
[Crossref]

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

R.-Y. Yang, H.-Y. Chen, and F.-D. Lai, “Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes,” Adv. Mater. Sci. Eng. 2012, 1 (2012).
[Crossref]

2011 (4)

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dyesensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[Crossref]

B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
[Crossref] [PubMed]

2009 (1)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[Crossref]

2008 (1)

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

2007 (1)

N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
[Crossref] [PubMed]

2006 (5)

X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
[Crossref]

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

A. M. Stephan, “Review on gel polymer electrolytes for lithium batteries,” Eur. Polym. J. 42(1), 21–42 (2006).
[Crossref]

A. M. Stephan and K. S. Nahm, “Review on composite polymer electrolytes for lithium batteries,” Polymer (Guildf.) 47(16), 5952–5964 (2006).
[Crossref]

I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
[Crossref]

2005 (1)

D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
[Crossref]

2003 (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 4(2), 145–153 (2003).
[Crossref]

2002 (1)

Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
[Crossref]

2000 (1)

T. C. Wen and W. C. Chen, “Blending thermoplastic polyurethanes and poly(ethylene oxide) for composite electrolytes via a mixture design approach,” J. Appl. Polym. Sci. 77(3), 680–692 (2000).
[Crossref]

Ahammad, A. J. S.

S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation,” Int. J. Photoenergy 2012, 851705 (2014).

Ahmad, A.

M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, “Review on polymer electrolyte in dye-sensitized solar cells (DSSCs),” Sol. Energy 115, 452–470 (2015).
[Crossref]

Albinsson, I.

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

Amirudin, S.

A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, “A method based on impedance spectroscopy to determine transport properties of polymer electrolytes,” Phys. Chem. Chem. Phys. 16(5), 1856–1867 (2014).
[Crossref] [PubMed]

Arof, A. K.

A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, “A method based on impedance spectroscopy to determine transport properties of polymer electrolytes,” Phys. Chem. Chem. Phys. 16(5), 1856–1867 (2014).
[Crossref] [PubMed]

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Aziz, M. F.

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Bandara, L. R. A. K.

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Bandara, T. M. W. J.

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

Bardhan, R.

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

Belcher, A. M.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

Bella, F.

F. Bella and R. Bongiovanni, “Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 16, 1–21 (2013).
[Crossref]

Bongiovanni, R.

F. Bella and R. Bongiovanni, “Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 16, 1–21 (2013).
[Crossref]

Byun, M.

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

Cai, S.

Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
[Crossref]

Cao, G.

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dyesensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[Crossref]

Careem, M. A.

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Castriota, M.

I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
[Crossref]

Cazzanelli, E.

I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
[Crossref]

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chen, C. Y.

K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
[Crossref]

Chen, H.-Y.

R.-Y. Yang, H.-Y. Chen, and F.-D. Lai, “Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes,” Adv. Mater. Sci. Eng. 2012, 1 (2012).
[Crossref]

Chen, W. C.

T. C. Wen and W. C. Chen, “Blending thermoplastic polyurethanes and poly(ethylene oxide) for composite electrolytes via a mixture design approach,” J. Appl. Polym. Sci. 77(3), 680–692 (2000).
[Crossref]

Chien, T. M.

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

Chiu, S. H.

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

Coppola, L.

I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
[Crossref]

Cronin, S.

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

Dang, X.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

De Silva, L. A. A.

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

Diau, E. W. G.

L. L. Li and E. W. G. Diau, “Porphyrin-sensitized solar cells,” Chem. Soc. Rev. 42(1), 291–304 (2013).
[Crossref] [PubMed]

Dissanayake, M. A. K. L.

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

Dong, Y.

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[Crossref]

Erwin, W. R.

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

Fan, L.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

Fang, S.

Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
[Crossref]

Fernado, H. D. N. S.

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

Fernando, H. D. N. S.

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

Furlani, M.

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

Ghobadi, N.

N. Ghobadi, “Band gap determination using absorption spectrum fitting procedure,” Int. Nano Lett. 3(1), 2 (2013).
[Crossref]

Grätzel, M.

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 4(2), 145–153 (2003).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[Crossref]

Gu, G.

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

Guo, Q.

B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
[Crossref] [PubMed]

Gupta, B.

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” J. Renew. Sustain. Energ. 69, 705–718 (2017).
[Crossref]

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Hammond, P. T.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

Hao, S.

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[Crossref]

Huang, M.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

Huang, N. M.

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, “Enhanced photovoltaic performance of silver @ titania plasmonic photoanode in dye-sensitized solar cells,” RSC Advances 4(72), 38111–38118 (2014).
[Crossref]

Huang, Y.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

Hung, W. H.

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

Hungerford, C.

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

Hurd, O.

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

Jang, Y. H.

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

Jang, Y. J.

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

Jayasundara, W. J. M. J. S. R.

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

Jeong, Y. B.

D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
[Crossref]

Kadhum, A. A. H.

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

Karim, N. S. A.

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

Kim, B.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Kim, D. H.

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

Kim, D. M.

S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation,” Int. J. Photoenergy 2012, 851705 (2014).

Kim, D. W.

D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
[Crossref]

Kim, H.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Kim, J. H.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Kim, J. S.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Kim, J. Y.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Kim, K.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Kim, S. H.

D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
[Crossref]

Kim, W. M.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Ko, M. J.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Kochuveedu, S. T.

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

Kumar, A.

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” J. Renew. Sustain. Energ. 69, 705–718 (2017).
[Crossref]

Lai, F.-D.

R.-Y. Yang, H.-Y. Chen, and F.-D. Lai, “Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes,” Adv. Mater. Sci. Eng. 2012, 1 (2012).
[Crossref]

Lai, S. N.

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lan, Z.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

Lau, W. M.

B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
[Crossref] [PubMed]

Lee, D. K.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Lee, D. Y.

D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
[Crossref]

Lee, J. A.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Lee, K. M.

K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
[Crossref]

Leung, K. M.

B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
[Crossref] [PubMed]

Lewis, N. S.

N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
[Crossref] [PubMed]

Li, F. Y.

X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
[Crossref]

Li, L. L.

L. L. Li and E. W. G. Diau, “Porphyrin-sensitized solar cells,” Chem. Soc. Rev. 42(1), 291–304 (2013).
[Crossref] [PubMed]

Lim, H. N.

S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, “Enhanced photovoltaic performance of silver @ titania plasmonic photoanode in dye-sensitized solar cells,” RSC Advances 4(72), 38111–38118 (2014).
[Crossref]

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

Lim, S. P.

S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, “Enhanced photovoltaic performance of silver @ titania plasmonic photoanode in dye-sensitized solar cells,” RSC Advances 4(72), 38111–38118 (2014).
[Crossref]

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

Lin, J.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

Lin, L. C.

K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
[Crossref]

Lin, Z.

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Luan, T.

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

Ludin, N. A.

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

Luo, G.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

Ma, T.

L. Wang, H. Zhang, C. Wang, and T. Ma, “Highly stable gel-state dye-sensitized solar cells based on high soluble polyvinyl acetate,” ACS Sustain. Chem.& Eng. 1(2), 205–208 (2013).
[Crossref]

Ma, T. L.

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

Mahmoud, A. A. A.

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

Mandal, P.

P. Mandal and S. Sharma, “Progress in plasmonic solar cell efficiency improvement: A status review,” J. Renew. Sustain. Energ. 65, 537–552 (2016).
[Crossref]

Marszalek, M.

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

Mellander, B.-E.

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

Mohamad, A. B.

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

Nahm, K. S.

A. M. Stephan and K. S. Nahm, “Review on composite polymer electrolytes for lithium batteries,” Polymer (Guildf.) 47(16), 5952–5964 (2006).
[Crossref]

Nicotera, I.

I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
[Crossref]

Noor, I. M.

A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, “A method based on impedance spectroscopy to determine transport properties of polymer electrolytes,” Phys. Chem. Chem. Phys. 16(5), 1856–1867 (2014).
[Crossref] [PubMed]

Noor, M. M.

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Oliviero, C.

I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
[Crossref]

Pandikumar, A.

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, “Enhanced photovoltaic performance of silver @ titania plasmonic photoanode in dye-sensitized solar cells,” RSC Advances 4(72), 38111–38118 (2014).
[Crossref]

Pavaskar, P.

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

Peng, Q.

Y. Qin and Q. Peng, “Ruthenium sensitizers and their applications in dye-sensitized solar cells,” Int. J. Photoenergy 2012(291579), 1–21 (2012).
[Crossref]

Qi, J.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

Qin, Y.

Y. Qin and Q. Peng, “Ruthenium sensitizers and their applications in dye-sensitized solar cells,” Int. J. Photoenergy 2012(291579), 1–21 (2012).
[Crossref]

Rahman, M. Y. A.

M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, “Review on polymer electrolyte in dye-sensitized solar cells (DSSCs),” Sol. Energy 115, 452–470 (2015).
[Crossref]

Ren, Y.

Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
[Crossref]

Richhariya, G.

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” J. Renew. Sustain. Energ. 69, 705–718 (2017).
[Crossref]

Rupasinghe, W. N. S.

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Sarker, S.

S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation,” Int. J. Photoenergy 2012, 851705 (2014).

Seo, H. W.

S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation,” Int. J. Photoenergy 2012, 851705 (2014).

Sharma, S.

P. Mandal and S. Sharma, “Progress in plasmonic solar cell efficiency improvement: A status review,” J. Renew. Sustain. Energ. 65, 537–552 (2016).
[Crossref]

Song, J. S.

D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
[Crossref]

Sopian, K.

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

Stephan, A. M.

A. M. Stephan, “Review on gel polymer electrolytes for lithium batteries,” Eur. Polym. J. 42(1), 21–42 (2006).
[Crossref]

A. M. Stephan and K. S. Nahm, “Review on composite polymer electrolytes for lithium batteries,” Polymer (Guildf.) 47(16), 5952–5964 (2006).
[Crossref]

Su’ait, M. S.

M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, “Review on polymer electrolyte in dye-sensitized solar cells (DSSCs),” Sol. Energy 115, 452–470 (2015).
[Crossref]

Suryanarayanan, V.

K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
[Crossref]

Svensson, T.

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

Tekasakul, P.

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” J. Renew. Sustain. Energ. 69, 705–718 (2017).
[Crossref]

Thotawatthage, C. A.

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Tian, H.

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

Wang, C.

L. Wang, H. Zhang, C. Wang, and T. Ma, “Highly stable gel-state dye-sensitized solar cells based on high soluble polyvinyl acetate,” ACS Sustain. Chem.& Eng. 1(2), 205–208 (2013).
[Crossref]

Wang, D.

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

Wang, L.

L. Wang, H. Zhang, C. Wang, and T. Ma, “Highly stable gel-state dye-sensitized solar cells based on high soluble polyvinyl acetate,” ACS Sustain. Chem.& Eng. 1(2), 205–208 (2013).
[Crossref]

Wang, P.

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[Crossref]

Webb, J. A.

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

Wei, L.

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

Wen, T. C.

T. C. Wen and W. C. Chen, “Blending thermoplastic polyurethanes and poly(ethylene oxide) for composite electrolytes via a mixture design approach,” J. Appl. Polym. Sci. 77(3), 680–692 (2000).
[Crossref]

Wu, C. G.

K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
[Crossref]

Wu, J.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

Wu, Y.

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

Xia, X.

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

Xia, Y. Y.

X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
[Crossref]

Xiong, H. M.

X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
[Crossref]

Yang, H.

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
[Crossref]

Yang, J.

B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
[Crossref] [PubMed]

Yang, M.

Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
[Crossref]

Yang, R.-Y.

R.-Y. Yang, H.-Y. Chen, and F.-D. Lai, “Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes,” Adv. Mater. Sci. Eng. 2012, 1 (2012).
[Crossref]

Yang, Y.

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

Yoo, K.

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

Yu, B.

B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
[Crossref] [PubMed]

Yusof, S. Z.

A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, “A method based on impedance spectroscopy to determine transport properties of polymer electrolytes,” Phys. Chem. Chem. Phys. 16(5), 1856–1867 (2014).
[Crossref] [PubMed]

Zakeeruddin, S. M.

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

Zarick, H. F.

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

Zhang, H.

L. Wang, H. Zhang, C. Wang, and T. Ma, “Highly stable gel-state dye-sensitized solar cells based on high soluble polyvinyl acetate,” ACS Sustain. Chem.& Eng. 1(2), 205–208 (2013).
[Crossref]

Zhang, Q.

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dyesensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[Crossref]

Zhang, X.

X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
[Crossref]

Zhang, Z.

Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
[Crossref]

Zhu, W.

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

ACS Nano (2)

K. Yoo, J. Y. Kim, J. A. Lee, J. S. Kim, D. K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, “Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,” ACS Nano 9(4), 3760–3771 (2015).
[Crossref] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

H. F. Zarick, O. Hurd, J. A. Webb, C. Hungerford, W. R. Erwin, and R. Bardhan, “Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures,” ACS Photonics 1(9), 806–811 (2014).
[Crossref]

ACS Sustain. Chem.& Eng. (1)

L. Wang, H. Zhang, C. Wang, and T. Ma, “Highly stable gel-state dye-sensitized solar cells based on high soluble polyvinyl acetate,” ACS Sustain. Chem.& Eng. 1(2), 205–208 (2013).
[Crossref]

Adv. Mater. Sci. Eng. (1)

R.-Y. Yang, H.-Y. Chen, and F.-D. Lai, “Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes,” Adv. Mater. Sci. Eng. 2012, 1 (2012).
[Crossref]

Chem. Rev. (3)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev. 115(5), 2136–2173 (2015).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

L. L. Li and E. W. G. Diau, “Porphyrin-sensitized solar cells,” Chem. Soc. Rev. 42(1), 291–304 (2013).
[Crossref] [PubMed]

Electrochim. Acta (1)

K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, and C. G. Wu, “Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells,” Electrochim. Acta 135, 578–584 (2014).
[Crossref]

Energy Environ. Sci. (1)

Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel, and W. Zhu, “High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes,” Energy Environ. Sci. 5(8), 8261–8272 (2012).
[Crossref]

Energy Procedia (1)

T. M. W. J. Bandara, T. Svensson, M. A. K. L. Dissanayake, M. Furlani, W. J. M. J. S. R. Jayasundara, and B.-E. Mellander, “Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells,” Energy Procedia 14, 1607–1612 (2012).
[Crossref]

Eur. Polym. J. (1)

A. M. Stephan, “Review on gel polymer electrolytes for lithium batteries,” Eur. Polym. J. 42(1), 21–42 (2006).
[Crossref]

Int. J. Hydrogen Energy (1)

A. K. Arof, M. F. Aziz, M. M. Noor, M. A. Careem, L. R. A. K. Bandara, C. A. Thotawatthage, W. N. S. Rupasinghe, and M. A. K. L. Dissanayake, “Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte,” Int. J. Hydrogen Energy 39(6), 2929–2935 (2014).
[Crossref]

Int. J. Photoenergy (2)

Y. Qin and Q. Peng, “Ruthenium sensitizers and their applications in dye-sensitized solar cells,” Int. J. Photoenergy 2012(291579), 1–21 (2012).
[Crossref]

S. Sarker, A. J. S. Ahammad, H. W. Seo, and D. M. Kim, “Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation,” Int. J. Photoenergy 2012, 851705 (2014).

Int. Nano Lett. (1)

N. Ghobadi, “Band gap determination using absorption spectrum fitting procedure,” Int. Nano Lett. 3(1), 2 (2013).
[Crossref]

J. Appl. Electrochem. (1)

T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundara, H. D. N. S. Fernado, M. A. K. L. Dissanayake, L. A. A. De Silva, I. Albinsson, M. Furlani, and B.-E. Mellander, “Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance,” J. Appl. Electrochem. 45(4), 289–298 (2015).
[Crossref]

J. Appl. Polym. Sci. (1)

T. C. Wen and W. C. Chen, “Blending thermoplastic polyurethanes and poly(ethylene oxide) for composite electrolytes via a mixture design approach,” J. Appl. Polym. Sci. 77(3), 680–692 (2000).
[Crossref]

J. Nanomater. (1)

T. M. Chien, P. Pavaskar, W. H. Hung, S. Cronin, S. H. Chiu, and S. N. Lai, “Study of the plasmon energy transfer processes in dye sensitized solar cells,” J. Nanomater. 2015, 2 (2015).
[Crossref]

J. Photochem. Photobiol. Chem. (2)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 4(2), 145–153 (2003).
[Crossref]

F. Bella and R. Bongiovanni, “Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 16, 1–21 (2013).
[Crossref]

J. Power Sources (2)

D. W. Kim, Y. B. Jeong, S. H. Kim, D. Y. Lee, and J. S. Song, “Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte,” J. Power Sources 149, 112–116 (2005).
[Crossref]

X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, “A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte,” J. Power Sources 160(2), 1451–1455 (2006).
[Crossref]

J. Renew. Sustain. Energ. (3)

N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, and N. S. A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” J. Renew. Sustain. Energ. 31, 386–396 (2014).
[Crossref]

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” J. Renew. Sustain. Energ. 69, 705–718 (2017).
[Crossref]

P. Mandal and S. Sharma, “Progress in plasmonic solar cell efficiency improvement: A status review,” J. Renew. Sustain. Energ. 65, 537–552 (2016).
[Crossref]

Mater. Chem. Phys. (1)

H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly (methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Mater. Chem. Phys. 110(1), 38–42 (2008).
[Crossref]

Nano Today (1)

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dyesensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[Crossref]

Nanoscale (1)

Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, “Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations,” Nanoscale 6(3), 1823–1832 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, “Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application,” Nanotechnology 22(11), 115603 (2011).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, “A method based on impedance spectroscopy to determine transport properties of polymer electrolytes,” Phys. Chem. Chem. Phys. 16(5), 1856–1867 (2014).
[Crossref] [PubMed]

Polymer (Guildf.) (1)

A. M. Stephan and K. S. Nahm, “Review on composite polymer electrolytes for lithium batteries,” Polymer (Guildf.) 47(16), 5952–5964 (2006).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[Crossref]

RSC Advances (4)

T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, and B.-E. Mellander, “Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells,” RSC Advances 6(105), 103683 (2016).
[Crossref]

S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, G. Gu, and T. L. Ma, “Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells,” RSC Advances 4(89), 48236–48244 (2014).
[Crossref]

S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, “Enhanced photovoltaic performance of silver @ titania plasmonic photoanode in dye-sensitized solar cells,” RSC Advances 4(72), 38111–38118 (2014).
[Crossref]

L. Wei, X. Xia, Y. Yang, P. Wang, Y. Dong, and T. Luan, “Variable temperature spectroelectrochemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells,” RSC Advances 6(72), 68341–68350 (2016).
[Crossref]

Science (1)

N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
[Crossref] [PubMed]

Sol. Energy (2)

Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2,” Sol. Energy 80(11), 1483–1488 (2006).
[Crossref]

M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, “Review on polymer electrolyte in dye-sensitized solar cells (DSSCs),” Sol. Energy 115, 452–470 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Sol. Energy Mater. Sol. Cells 71(2), 253–259 (2002).
[Crossref]

Solid State Ion. (1)

I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes,” Solid State Ion. 177(5-6), 581–588 (2006).
[Crossref]

Other (5)

Y. Qin, and Q. Peng, “Ruthenium sensitizers and their applications in dye-sensitized solar cells,” Int. J. Photoenergy 2012, 291579 (2012).
[Crossref]

D. R. Paul, “Polymer blends,” (Vol. 1), Elsevier (2012).

C. Sequeira, and D. Santos, Polymer Electrolytes: Fundamentals and Applications (Elsevier, Woodhead Publishing, 2010).

S.N.F. Yusuf, M.F. Aziz, H.C. Hassan, T.M.W.J. Bandara, B.-E. Mellander, M.A. Careem, A.K. Arof, “Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells,” J. Chem. 2014, 783023 (2014).
[Crossref]

D. Eli, M.S. Ahmad, A.B. Bikimi, and O.A. Babatunde, “Plasmonic dye sensitized solar cells incorporated with TiO2-Ag nanostructures,” International Research Journal of Pure and Applied Chemistry 11(3), 1–7 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Ionic conductivity variations with different PEO and PhCh contents in the electrolyte.
Fig. 2
Fig. 2 Current density versus cell potential (J-V) curves for DSSCs based on anthocyanin sensitizer and gel polymer electrolytes containing different amounts of PEO and PhCh host polymers. Measurements were taken under light irradiation of 1000 W m−2.
Fig. 3
Fig. 3 J-V curves for quasi solid-state DSSCs based on anthocyanin sensitizer containing different amounts of Ag nanoparticles in TiO2 photoanode measured under light irradiation of 1000 W m−2.
Fig. 4
Fig. 4 J-V curves for DSSCs based on N3 sensitizer fabricated with GPE containing different weight fractions of PEO and PhCh host polymers under 1000 W m−2 light illumination.
Fig. 5
Fig. 5 J-V characteristics for quasi solid-state DSSCs with N3 sensitizer and different amounts of Ag nanoparticles in TiO2 photoanode. Measurements were taken under 1000 W m−2 light illumination.
Fig. 6
Fig. 6 EIS for quasi solid state DSSC with anthocyanin sensitizer and different amounts of Ag nanoparticles in TiO2 photoanode.
Fig. 7
Fig. 7 (a) The equivalent circuit and (b) respective Nyquist plots used in the present study to represent DSSCs.
Fig. 8
Fig. 8 EIS for quasi solid-state DSSC with N3 sensitizer fabricated and TiO2 photoanode containing different amounts of Ag nanoparticles.
Fig. 9
Fig. 9 The efficiency and 1/R2 (charge transport conductance) against the Ag nanoparticle content in TiO2 photoanode of DSSC. Circular symbols and square symbols represent anthocyanin and N3 sensitizers, respectively. Filled and unfiled symbols give efficiency and charge transport conductance (1/R2), respectively.
Fig. 10
Fig. 10 Equivalent circuit based on J–V characteristics of DSSC.
Fig. 11
Fig. 11 (a) UV-Vis absorption spectra and (b) ( Abs( λ )×hc λ ) 2 against hc λ plot of TiO2 layer containing different Ag nanoparticles composition.
Fig. 12
Fig. 12 UV-Vis absorption spectra of TiO2 layer containing different Ag nanoparticles soaked in anthocyanin sensitizer.
Fig. 13
Fig. 13 UV-Vis absorption spectra of TiO2 layer containing different Ag nanoparticles soaked in N3 dye.

Tables (9)

Tables Icon

Table 1 Designation and sample composition of gel polymer electrolytes.

Tables Icon

Table 2 The short-circuit current density (Jsc), fill factor (FF), open-circuit voltage (Voc) and power conversion efficiency (η) of DSSCs based on anthocyanin sensitizer fabricated with gel polymer electrolytes containing different amounts of PEO and PhCh host polymers.

Tables Icon

Table 3 Jsc, Voc, FF, and η of DSSCs based on anthocyanin sensitizer containing different amounts of Ag nanoparticles in TiO2 photoanode.

Tables Icon

Table 4 Jsc, Voc, FF, and η of DSSCs based on N3 sensitizer fabricated with GPE containing different weight fractions of PEO and PhCh host polymers.

Tables Icon

Table 5 Jsc, Voc, FF, and η of DSSCs with N3 sensitizer containing different amounts of Ag nanoparticles in TiO2 photoanode.

Tables Icon

Table 6 Rs, R1, R2, R3 values for quasi solid-state DSSCs based on anthocyanin sensitizer with different amounts of Ag nanoparticles in TiO2 photoanode.

Tables Icon

Table 7 Rs, R1, R2, R3 values for quasi-solid state DSSCs with N3 sensitizer and TiO2 photoanode containing different amounts of Ag nanoparticles.

Tables Icon

Table 8 Values of series resistance (Rs) and shunt resistance (Rsh) for DSSC with anthocyanin and N3 sensitizer and different amounts of Ag nanoparticles in TiO2 photoanode.

Tables Icon

Table 9 Energy gap of TiO2 layer containing different amount of Ag nanoparticles obtained from Fig. 10(b.)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ= t R b A
FF(%)= J opt V opt J sc V oc ×100%
η(%)= J sc V oc FF P in ×100%
Z'= R s +[ i=1 3 R i + R i 2 k i 1 ω p i cos( π p i 2 ) 1+2 R i k i 1 ω p i cos( π p i 2 )+ R i 2 k i 2 ω 2 p i ]
Z"= i=1 3 R i 2 k i 1 ω p i sin( π p i 2 ) 1+2 R i k i 1 ω p i cos( π p i 2 )+ R i 2 k i 2 ω 2 p i
α(λ) hc λ =B( hc λ E g )
( Abs( λ )×hc λ ) 2 = B 1 ( hc λ E g )+ B 2

Metrics