Abstract

To design a high performance BaTiO3 (BTO)-integrated Si modulator, understanding how BTO domain orientations influence its electro-optical (EO) properties is crucial. The 100-nm-thick BTO films with c-oriented and a-oriented domains are obtained by exploiting various thickness of SrTiO3 buffer layers grown on Si(001) substrates. Then, the electro-optical behavior for 2 differently oriented samples is analyzed using spectroscopic ellipsometry.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

19 June 2017: A typographical correction was made to paragraph 2 of Section 1.

References

  • View by:
  • |
  • |
  • |

  1. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
    [Crossref] [PubMed]
  2. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
    [Crossref] [PubMed]
  3. R. W. Whatmore, “Pyroelectric ceramics and devices for thermal infra-red detection and imaging,” Ferroelectrics 118(1), 241–259 (1991).
    [Crossref]
  4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
    [Crossref] [PubMed]
  5. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
    [Crossref]
  6. B. W. Wessels, “Ferroelectric Epitaxial Thin Films for Integrated Optics,” Annu. Rev. Mater. Res. 37(1), 659–679 (2007).
    [Crossref]
  7. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  8. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
    [Crossref]
  9. R. A. Soref and B. R. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  11. M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
    [Crossref]
  12. G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today 8(1), 40–50 (2005).
    [Crossref]
  13. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [Crossref] [PubMed]
  14. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  15. A. Yariv and P. Yeh, Optical waves in crystals (Wiley, New York, 1984), Vol. 10.
  16. A. A. Demkov and A. B. Posadas, Integration of functional oxides with semiconductors (Springer, 2014).
  17. J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
    [Crossref] [PubMed]
  18. D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
    [Crossref]
  19. R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. Lett. 81(14), 3014–3017 (1998).
    [Crossref]
  20. C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
    [Crossref] [PubMed]
  21. S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. Lightwave Technol. 34(8), 1688–1693 (2016).
    [Crossref]
  22. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
    [Crossref] [PubMed]
  23. C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
    [Crossref] [PubMed]
  24. C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
    [Crossref]
  25. G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
    [Crossref]
  26. N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988).
    [Crossref]
  27. M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, R. Cid, J. Rubio-Zuazo, G. R. Castro, J. Van Campenhout, P. Absil, and C. Merckling, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si(001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” to be published in Appl. Phys. Express.
  28. F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
    [Crossref]
  29. M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
    [Crossref]
  30. M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
    [Crossref]
  31. D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
    [Crossref]
  32. M. H. M. Hsu et al., imec, Kapeldreef 75, 3001, Leuven, Belgium, are preparing a manuscript to be called “Crystal structures and ferroelectricity for epitaxial BaTiO3 on SrTiO3-on-Si pseudo-substrate using plasma-assisted molecular beam epitaxy.”
  33. D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
    [Crossref]
  34. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
    [Crossref] [PubMed]

2016 (3)

S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. Lightwave Technol. 34(8), 1688–1693 (2016).
[Crossref]

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

2015 (2)

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

2014 (1)

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

2013 (2)

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

2011 (1)

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

2010 (1)

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

2008 (2)

D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
[Crossref]

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

2007 (1)

B. W. Wessels, “Ferroelectric Epitaxial Thin Films for Integrated Optics,” Annu. Rev. Mater. Res. 37(1), 659–679 (2007).
[Crossref]

2006 (2)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

2005 (1)

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today 8(1), 40–50 (2005).
[Crossref]

2004 (4)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

2001 (1)

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[Crossref] [PubMed]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1999 (1)

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

1998 (1)

R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. Lett. 81(14), 3014–3017 (1998).
[Crossref]

1994 (1)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

1991 (1)

R. W. Whatmore, “Pyroelectric ceramics and devices for thermal infra-red detection and imaging,” Ferroelectrics 118(1), 241–259 (1991).
[Crossref]

1988 (1)

N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1966 (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Abel, S.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. Lightwave Technol. 34(8), 1688–1693 (2016).
[Crossref]

Absil, P.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
[Crossref]

Ahn, C. H.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Alexe, M.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Arruda, T. M.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Bender, H.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bernasconi, P.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Biegalski, M.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Botella, C.

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

Bousquet, E.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Bruley, J.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Caimi, D.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. Lightwave Technol. 34(8), 1688–1693 (2016).
[Crossref]

Campenhout, J. V.

M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
[Crossref]

Cartier, E.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Caymax, M.

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Chen, L. Q.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Chen, L.-Q.

D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
[Crossref]

Chen, Y. B.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Chiles, J.

Chisholm, M.

R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. Lett. 81(14), 3014–3017 (1998).
[Crossref]

Choi, K. J.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Clayman, B.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Coster, J. D.

M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
[Crossref]

Crandles, D.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Czornomaz, L.

Dawber, M.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Dekoster, J.

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

Delhaye, G.

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Demkov, A. A.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Dreher, C.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Dubourdieu, C.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Duelli, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

El Kazzi, S.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

El-Kazzi, M.

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Eltes, F.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

Eom, C. B.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Fallegger, F.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

Fathpour, S.

Fompeyrine, J.

S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. Lightwave Technol. 34(8), 1688–1693 (2016).
[Crossref]

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Frank, D. J.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Frank, M. M.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Gao, J.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Gao, X.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Gariglio, S.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Garrett, M. H.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Garrity, K. F.

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Gendry, M.

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Ghosez, P.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Gong, W.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Gopalan, V.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Greedan, J.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Günter, P.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Hermet, P.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Heyns, M.

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

Hollinger, G.

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Homes, C.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Homes, C. C.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[Crossref] [PubMed]

Homma, T.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

Hsu, M. H. M.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

Ismail-Beigi, S.

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Jason Png, C. E.

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today 8(1), 40–50 (2005).
[Crossref]

Jing, X.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Jordan-Sweet, J.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Kalinin, S. V.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Khan, S.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Kolpak, A. M.

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Kumah, D.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Largeau, L.

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Lepage, G.

M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
[Crossref]

Li, M.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Li, Y. L.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Lichtensteiger, C.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Likhachev, D. V.

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liu, J. M.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Lu, X.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Lucas, N.

N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988).
[Crossref]

Ma, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Malkova, N.

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

Marchiori, C.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

McConnell, A.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

McKee, R.

R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. Lett. 81(14), 3014–3017 (1998).
[Crossref]

Meersschaut, J.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

Merckling, C.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Morkoc, H.

N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988).
[Crossref]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nagaya, T.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

Nakamura, M.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

Narayanan, V.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Ngai, J. H.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Nicholas, B.

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Nonoyama, T.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

O’Connor, E.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

Offrein, B.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

Offrein, B. J.

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Pan, X.

D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
[Crossref]

Pan, X. Q.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Pantouvaki, M.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
[Crossref]

Patriarche, G.

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Pernice, W. H.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Posadas, A.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Poslavsky, L.

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

Rabiei, P.

Ramirez, A. P.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today 8(1), 40–50 (2005).
[Crossref]

Reiche, P.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Reiner, J. W.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Richard, O.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

Robach, Y.

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Rossell, M. D.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Rytz, D.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Saint-Girons, G.

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

Saito, Y.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Schlesser, R.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Schlom, D. G.

D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
[Crossref]

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Schmehl, A.

D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
[Crossref]

Schubert, J.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Segal, Y.

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Shapiro, S. M.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[Crossref] [PubMed]

Sharan, A.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Skinner, J. G.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Sousa, M.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. Lightwave Technol. 34(8), 1688–1693 (2016).
[Crossref]

Stoferle, T.

Stuckelberger, M.

Stucki, N.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Takao, H.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

Takatori, K.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

Tang, H. X.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Tani, T.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

Triscone, J. M.

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Uecker, R.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Unlu, H.

N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988).
[Crossref]

Van Campenhout, J.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

Van Thourhout, D.

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

Verheyen, P.

M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
[Crossref]

Vogt, T.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[Crossref] [PubMed]

Wakimoto, S.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[Crossref] [PubMed]

Walker, F.

R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. Lett. 81(14), 3014–3017 (1998).
[Crossref]

Walker, F. J.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Wemple, S. H.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Wessels, B. W.

B. W. Wessels, “Ferroelectric Epitaxial Thin Films for Integrated Optics,” Annu. Rev. Mater. Res. 37(1), 659–679 (2007).
[Crossref]

Whatmore, R. W.

R. W. Whatmore, “Pyroelectric ceramics and devices for thermal infra-red detection and imaging,” Ferroelectrics 118(1), 241–259 (1991).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Wu, S.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Wu, X.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Xiong, C.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Zabel, H.

N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988).
[Crossref]

Zeng, M.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Zgonik, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Zhang, Z.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Zhou, J.

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Zhu, Y.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Zurbuchen, M. A.

D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
[Crossref]

ACS Photonics (1)

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016).
[Crossref]

Adv. Electron. Mater. (1)

M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015).
[Crossref]

Adv. Mater. (1)

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

B. W. Wessels, “Ferroelectric Epitaxial Thin Films for Integrated Optics,” Annu. Rev. Mater. Res. 37(1), 659–679 (2007).
[Crossref]

Appl. Phys. Lett. (2)

C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011).
[Crossref]

N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988).
[Crossref]

Ferroelectrics (1)

R. W. Whatmore, “Pyroelectric ceramics and devices for thermal infra-red detection and imaging,” Ferroelectrics 118(1), 241–259 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

J. Am. Ceram. Soc. (1)

D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008).
[Crossref]

J. Appl. Phys. (3)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006).
[Crossref]

M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016).
[Crossref]

J. Lightwave Technol. (1)

Mater. Today (1)

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today 8(1), 40–50 (2005).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013).
[Crossref] [PubMed]

Nature (4)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004).
[Crossref] [PubMed]

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. Lett. 81(14), 3014–3017 (1998).
[Crossref]

Phys. Status Solidi (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Science (2)

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[Crossref] [PubMed]

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref] [PubMed]

Thin Solid Films (1)

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

Other (5)

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, R. Cid, J. Rubio-Zuazo, G. R. Castro, J. Van Campenhout, P. Absil, and C. Merckling, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si(001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” to be published in Appl. Phys. Express.

M. H. M. Hsu et al., imec, Kapeldreef 75, 3001, Leuven, Belgium, are preparing a manuscript to be called “Crystal structures and ferroelectricity for epitaxial BaTiO3 on SrTiO3-on-Si pseudo-substrate using plasma-assisted molecular beam epitaxy.”

M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3.
[Crossref]

A. Yariv and P. Yeh, Optical waves in crystals (Wiley, New York, 1984), Vol. 10.

A. A. Demkov and A. B. Posadas, Integration of functional oxides with semiconductors (Springer, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The ω-2θ XRD scans along [001]BTO/STO and [101]BTO/STO for a 100-nm-thick BTO layer on 10- and 40-nm-thick STO layer. (b) A ϕ-scan of {202}Si, {202}BTO, and {202}STO for 100-nm-thick BTO on a 40 nm STO layer.

Fig. 2
Fig. 2

(a) The RHEED patterns for c- and a-oriented BTO layers on Si(001). TEM (b) and HAADF-STEM (c) images for 100-nm-thick layers of a-oriented BTO on a Si(001) substrate with a 10-nm-thick STO buffer layer.

Fig. 3
Fig. 3

(a) The J–V curves in terms of various post-process annealing temperatures under 30 min oxygen ambient for 100-nm-thick layers of a-oriented BTO on highly p-doped Si substrates with a 10 nm STO buffer layer. The top electrode is gold (10 nm). (b) and (c) are the current density at + 1 V and −1 V, respectively, for different annealing temperatures.

Fig. 4
Fig. 4

(a) The measured cos(Δ) spectrum at AOI 65° for a-oriented BTO (100 nm) on a STO-buffered (10 nm) Si substrate at 0 V. The dotted lines indicate the wavelengths where the EO measurements with long acquisition time were executed. The inset shows an EO-induced spectrum shift at 460 nm. (b) The cos(Δ) difference induced by applying 1 V. (c) The refractive indices of BTO, STO, and ITO that are used in the spectrum calculation. (d) A simulated cos(Δ) curve using the TMM with a BTO index variation δnBTO of between −0.05 and 0.05.

Fig. 5
Fig. 5

δnBTO at 1 V for a- and c-oriented BTO.

Fig. 6
Fig. 6

(a) Lattice structure for c-oriented BTO and its index ellipsoid without and with an applied electric field. (b) Relationship between the electric field and the optical axis in c- and a-oriented BTO.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

O o = v .. o + 2e / + ½ O 2 ( g )
r T M r T E = tan ( Ψ ) e i Δ
( 1 n o 2 + r 13 E z ) x 2 + ( 1 n o 2 + r 13 E z ) y 2 + ( 1 n e 2 + r 33 E z ) z 2 + 2 r 51 E y yz  +   2 r 51 E x xz = 1
r i j = [ 0 0 r 33 0 0 r 33 0 0 r 33 0 r 51 0 r 51 0 0 0 0 0 ] ;

Metrics