Abstract

We report on a modified sol-gel method combined with an innovative high-temperature melting technology for the preparation of Yb3+-doped silica glass rods (∅3−18 mm) with high optical quality and low background loss. We prepared Al-Yb, Al-P-Yb, Al-F-Yb, and Al-P-F-Yb doped silica glass rods for large mode area fibers (LMA) with a high laser power and low core numerical aperture (0.02). We were able to successfully solve the doping homogeneity problem caused by the volatility of P and F. More importantly, we developed a purification technology and successfully reduced the optical attenuation to 0.05 dB/m. An Al-Yb co-doped silica photonic crystal fiber (PCF) with a core diameter of 100 µm was fabricated for laser behaviour characterization. In the continuous wavelength laser measurement, a laser output slope efficiency of 83.3% was obtained from the fabricated PCF. To our knowledge, this is the highest slope efficiency derived from a Yb3+-doped silica PCF prepared by a non-CVD method. In the pulse amplification laser experiment, an average amplified power of 310 W with a peak power of 1.5 MW and a pulse duration of 21 ps were achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method

Shikai Wang, Wenbin Xu, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Wei Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 6(1) 69-78 (2016)

Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers

Fan Wang, Lili Hu, Wenbin Xu, Meng Wang, Suya Feng, Jinjun Ren, Lei Zhang, Danping Chen, Nadège Ollier, Guojun Gao, Chunlei Yu, and Shikai Wang
Opt. Express 25(21) 25960-25969 (2017)

Yb3+-doped large-mode-area photonic crystal fiber for fiber lasers prepared by laser sintering technology

Yun Chen, Nan Zhao, Jiantao Liu, Yang Xiao, Mengmeng Zhu, Ke Liu, Guiyao Zhou, Zhiyun Hou, Changming Xia, Yi Zheng, and Zhenqiang Chen
Opt. Mater. Express 9(3) 1356-1364 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
    [Crossref]
  2. M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
    [Crossref]
  3. M. A. Abdelalim, H. E. Kotb, H. Anis, and S. Tchouragoulov, “Power-scaled dissipative soliton using double-claddingpumped Yb-doped all-fiber amplifier,” Photon. Res. 4(6), 277–280 (2016).
    [Crossref]
  4. V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2015).
  5. Y. Z. Liu, Y. F. Cui, J. Zhang, A. M. Wang, and Z. G. Zhang, “73 nJ, 109 fs Yb-doped fiber laser at 19 MHz repetition rate in amplifier similariton regime,” Photon. Res. 3(5), 248–251 (2015).
    [Crossref]
  6. E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” J. Lightwave Technol. 30(22), 3494–3499 (2012).
    [Crossref]
  7. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
    [Crossref] [PubMed]
  8. D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
    [Crossref] [PubMed]
  9. C. Jollivet, K. Wei, B. Samson, and A. Schulzgen, “Low-loss, single-mode propagation in large-mode-area leakage channel fiber from 1 to 2 μm,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CM31.4.
    [Crossref]
  10. T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17(19), 16394–16405 (2009).
    [Crossref] [PubMed]
  11. D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
    [Crossref] [PubMed]
  12. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  13. C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output,” in Conference on Advanced Solid-State Photonics (Optical Society of America, 2011), paper AMC5.
    [Crossref]
  14. X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref] [PubMed]
  15. S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
    [Crossref]
  16. D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
    [Crossref] [PubMed]
  17. T. Shi, Z. Zhou, L. Ni, X. Xiao, H. Zhan, A. Zhang, and A. Lin, “Ytterbium-doped large-mode-area silica fiber fabricated by using chelate precursor doping technique,” Appl. Opt. 53(15), 3191–3195 (2014).
    [Crossref] [PubMed]
  18. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [Crossref] [PubMed]
  19. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [Crossref] [PubMed]
  20. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref] [PubMed]
  21. W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt and M. Jäger. “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
    [Crossref]
  22. S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
    [Crossref]
  23. W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
    [Crossref]
  24. A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
    [Crossref]
  25. W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
    [Crossref]
  26. W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 μm core diameter Yb3+Al3+/F− codoped silica fiber with M2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
    [Crossref] [PubMed]

2016 (5)

2015 (4)

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2015).

Y. Z. Liu, Y. F. Cui, J. Zhang, A. M. Wang, and Z. G. Zhang, “73 nJ, 109 fs Yb-doped fiber laser at 19 MHz repetition rate in amplifier similariton regime,” Photon. Res. 3(5), 248–251 (2015).
[Crossref]

2014 (6)

2013 (1)

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

2012 (2)

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” J. Lightwave Technol. 30(22), 3494–3499 (2012).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

2005 (1)

Abdelalim, M. A.

Aleshkina, S. S.

Alkeskjold, T. T.

Anis, H.

Bachert, C.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Bartelt, H.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

Beier, F.

Bierlich, J.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

Boulon, G.

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

Broeng, J.

Chen, D.

Chen, D. P.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Chen, W.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

Coscelli, E.

Cucinotta, A.

Cui, Y. F.

Deguil-Robin, N.

Devautour, M.

Dong, L.

Dunn, C.

Eberhardt, R.

Eschrich, T.

Feng, S.

Feng, S. Y.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Février, S.

Fu, L.

Galvanauskas, A.

Gaponov, D. A.

Grimm, S.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Gu, G.

Guryanov, A. N.

Guzik, M.

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

Haarlammert, N.

Hawkins, T.

He, W.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

Hein, S.

Hu, I.-N.

Hu, L.

Hu, L. L.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Hupel, C.

Ihring, J.

Jäger, M.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

Jain, D.

Jakobsen, C.

Jones, M.

Jørgensen, M. M.

Jung, Y.

Just, F.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Kalichevsky-Dong, M. T.

Kaplan, A.

Khitrov, V.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2015).

Kobelke, J.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

Kong, F.

Kotb, H. E.

Kozak, M.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Krause, V.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Kuhn, S.

Langner, A.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Leich, M.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Leick, L.

Li, Z. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Liem, A.

Likhachev, M. E.

Limpert, J.

Lin, A.

Lin, Z.

Liu, Y. Z.

Lou, F. G.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

Ma, X.

Manek-Hönninger, I.

McKay, H. A.

Minelly, J. D.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2015).

Müller, B.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

Ni, L.

Nold, J.

Nolte, S.

Nunez-Velazquez, M.

Parsons, J.

Peng, X.

Petersson, A.

Petit, V.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2015).

Poli, F.

Rehmann, G.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Ren, J. J.

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

Röser, F.

Roy, P.

Sahu, J. K.

Saitoh, K.

Salganskii, M. Y.

Salin, F.

Sattler, B.

Schötz, G.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Schreiber, T.

Schwuchow, A.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Selleri, S.

Shao, C. Y.

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

Shi, T.

Such, M.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Suzuki, S.

Tchouragoulov, S.

Tumminelli, R. P.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2015).

Tünnermann, A.

Wang, A. M.

Wang, M.

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 μm core diameter Yb3+Al3+/F− codoped silica fiber with M2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
[Crossref] [PubMed]

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Wang, S.

Wang, S. K.

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Wang, X.

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

Wedel, B.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Xiao, X.

Xu, W.

Xu, W. B.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

Yashkov, M. V.

Yu, C.

Yu, C. L.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Yu, C. Y.

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

Zellmer, H.

Zhan, H.

Zhang, A.

Zhang, J.

Zhang, L.

Zhang, L. Y.

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

Zhang, Z. G.

Zhou, Q.

Zhou, Q. L.

S. K. Wang, W. B. Xu, F. G. Lou, L. Zhang, Q. L. Zhou, D. P. Chen, W. Chen, S. Y. Feng, M. Wang, C. L. Yu, and L. L. Hu, “Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method,” Opt. Mater. Express 6(1), 69–78 (2016).
[Crossref]

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Zhou, Z.

Zhu, C.

Zhu, Y.

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

Zimer, H.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Appl. Opt. (1)

IEEE Photonic Tech L. (1)

W. B. Xu, M. Wang, S. Y. Feng, L. Zhang, Q. L. Zhou, D. P. Chen, L. Y. Zhang, S. K. Wang, C. Y. Yu, and L. L. Hu, “Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber,” IEEE Photonic Tech L. 28(4), 391–393 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

W. B. Xu, J. J. Ren, C. Y. Shao, X. Wang, M. Wang, L. Zhang, D. P. Chen, S. K. Wang, C. L. Yu, and L. L. Hu, “Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ codoped silica glass,” J. Lumin. 167, 8–15 (2015).
[Crossref]

J. Mater. Chem. (1)

S. K. Wang, F. G. Lou, C. L. Yu, Q. L. Zhou, M. Wang, S. Y. Feng, D. P. Chen, L. L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influences of the Al3+ and P5+ ions contents on the valence state and the dispersion effect of Yb3+ ions in silica glass,” J. Mater. Chem. 2(22), 4406–4414 (2014).
[Crossref]

Opt. Express (8)

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
[Crossref] [PubMed]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
[Crossref] [PubMed]

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
[Crossref] [PubMed]

T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17(19), 16394–16405 (2009).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (2)

Proc. SPIE (3)

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2015).

M. Leich, W. He, S. Grimm, J. Kobelke, Y. Zhu, B. Müller, J. Bierlich, H. Bartelt, and M. Jäger, “High peak power amplification in large-core all-solid Yb fibers with anindex-elevated pump clad and a low numerical aperture core,” Proc. SPIE 9344, 93440T (2015).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Other (3)

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt and M. Jäger. “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

C. Jollivet, K. Wei, B. Samson, and A. Schulzgen, “Low-loss, single-mode propagation in large-mode-area leakage channel fiber from 1 to 2 μm,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CM31.4.
[Crossref]

C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output,” in Conference on Advanced Solid-State Photonics (Optical Society of America, 2011), paper AMC5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheme of the Yb3+-doped LMA fiber fabrication procedure.
Fig. 2
Fig. 2 Refractive index profiles of (a) an Al-Yb co-doped core glass rod with no silica cladding and (b) an Al-P-F-Yb co-doped core glass rod with silica cladding.
Fig. 3
Fig. 3 EPMA-mapping analysis of the Yb3+ distribution in an Al-Yb co-doped core glass rod.
Fig. 4
Fig. 4 (a) Photograph of a Yb3+-doped silica core glass rod, (b) photograph of a core glass rod immersed in kerosene and irradiated from one end by a green laser simultaneously, and (c) photograph of the shadows of the core-glass rods under illumination.
Fig. 5
Fig. 5 (a) Absorption, (b) fluorescence, and (c) luminescence decay spectra of an Al-Yb co-doped silica core-glass slice, and (d) the energy level diagram of Yb3+ (the fluorescence spectrum was detected under 896 nm excitation; sample thickness: 2 mm).
Fig. 6
Fig. 6 Optical attenuation spectrum of the single clad fiber.
Fig. 7
Fig. 7 Experimental setup for the fiber laser.
Fig. 8
Fig. 8 Laser output power versus the incident pump power curve, and (inset) micrograph of the LMA PCF cross section.
Fig. 9
Fig. 9 (a) Experimental setup of a master oscillator power amplifier system and (b) measured amplified signal power as a function of pumped power. Inset: a laser beam profile in the far field.

Tables (1)

Tables Icon

Table 1 Absorption (σabs) and emission (σem) cross sections as well as the fluorescence lifetimes (τm) at 1020 nm of Yb3+-doped silica glasses with different co-dopants.

Metrics