Abstract

Extraordinarily thick well-aligned planar cholesteric liquid crystal (CLC) cells with low scattering loss have been successfully fabricated using a field-assisted self-assembly technique. These cells exhibit excellent 1D photonic crystal properties such as photonic band-gap and strong group velocity dispersion at the band edges and enable several all-optical ultrafast laser pulse modulation operations. In particular, we report an experimental observation of the clear separation of ~1 ps between the normal and slow 600 fs light pulses after traversing a 0.55 mm-thick CLC. With simple optimization procedures, such as tuning the photonic band-edge and laser wavelength, and use of more appropriate laser pulse duration and bandwidth, one could realize a much larger effect. These extraordinarily thick CLCs have previously also demonstrated their capabilities for direct compression, stretching and recompression of sub-picosecond pulses, and thus present themselves as promising compact, all-optical and versatile alternatives to existing materials for slow-light production and ultrafast pulse modulation operations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals

Yikun Liu, You Wu, Chun-Wei Chen, Jianying Zhou, Tsung-Hsien Lin, and Iam Choon Khoo
Opt. Express 24(10) 10458-10465 (2016)

Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector

Ying Zhou, Yuhua Huang, and Shin-Tson Wu
Opt. Express 14(9) 3906-3916 (2006)

Lasing in chiral photonic liquid crystals and associated frequency tuning

Andy Y.-G. Fuh, Tsung-Hsien Lin, J.-H. Liu, and F.-C. Wu
Opt. Express 12(9) 1857-1863 (2004)

References

  • View by:
  • |
  • |
  • |

  1. I. C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific Publishing, 1995).
  2. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
    [Crossref]
  3. I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
    [Crossref]
  4. J. Ptasinski, S. W. Kim, L. Pang, I. C. Khoo, and Y. Fainman, “Optical tuning of silicon photonic structures with nematic liquid crystal claddings,” Opt. Lett. 38(12), 2008–2010 (2013).
    [Crossref] [PubMed]
  5. C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
    [Crossref] [PubMed]
  6. I. C. Khoo, C.-W. Chen, and T.-J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
    [Crossref] [PubMed]
  7. Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
    [Crossref] [PubMed]
  8. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
    [Crossref]
  9. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, “Liquid-crystal laser optics: design, fabrication, and performance,” J. Opt. Soc. Am. B 5(9), 1962–1979 (1988).
    [Crossref]
  10. N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
    [Crossref] [PubMed]
  11. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
    [Crossref]
  12. L. Cattaneo, M. Savoini, I. Muševič, A. Kimel, and T. Rasing, “Ultrafast all-optical response of a nematic liquid crystal,” Opt. Express 23(11), 14010–14017 (2015).
    [Crossref] [PubMed]
  13. J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, “Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal,” Opt. Lett. 29(22), 2644–2646 (2004).
    [Crossref] [PubMed]
  14. L. Song, S. Fu, Y. Liu, J. Zhou, V. G. Chigrinov, and I. C. Khoo, “Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal,” Opt. Lett. 38(23), 5040–5042 (2013).
    [Crossref] [PubMed]
  15. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005).
    [Crossref] [PubMed]
  16. A. Jullien, U. Bortolozzo, S. Grabielle, J.-P. Huignard, N. Forget, and S. Residori, “Continuously tunable femtosecond delay-line based on liquid crystal cells,” Opt. Express 24(13), 14483–14493 (2016).
    [Crossref] [PubMed]
  17. Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals,” Opt. Express 24(10), 10458–10465 (2016).
    [Crossref] [PubMed]
  18. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  19. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
    [Crossref]
  20. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  21. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
    [Crossref]
  22. J. T. Mok, C. Martijn de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
    [Crossref]
  23. K. S. Abedin, G.-W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44(1), 16–17 (2008).
    [Crossref]
  24. C.-J. Ma, L.-Y. Ren, Y.-P. Xu, Y.-L. Wang, H. Zhou, H.-W. Fu, and J. Wen, “Theoretical and experimental study of structural slow light in a microfiber coil resonator,” Appl. Opt. 54(18), 5619–5623 (2015).
    [Crossref] [PubMed]
  25. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [Crossref] [PubMed]
  26. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref] [PubMed]
  27. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref] [PubMed]
  28. P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
    [Crossref]
  29. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  30. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [Crossref] [PubMed]
  31. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11(11), 2206–2215 (1994).
    [Crossref]

2016 (6)

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

I. C. Khoo, C.-W. Chen, and T.-J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
[Crossref]

Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals,” Opt. Express 24(10), 10458–10465 (2016).
[Crossref] [PubMed]

A. Jullien, U. Bortolozzo, S. Grabielle, J.-P. Huignard, N. Forget, and S. Residori, “Continuously tunable femtosecond delay-line based on liquid crystal cells,” Opt. Express 24(13), 14483–14493 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (1)

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

2013 (2)

2010 (3)

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

2009 (2)

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[Crossref]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

2008 (3)

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

K. S. Abedin, G.-W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44(1), 16–17 (2008).
[Crossref]

2007 (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

2006 (1)

J. T. Mok, C. Martijn de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[Crossref]

2005 (3)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

2001 (1)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

1994 (1)

1988 (1)

Abedin, K. S.

K. S. Abedin, G.-W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44(1), 16–17 (2008).
[Crossref]

Audouard, E.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Bisoyi, H. K.

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Bortolozzo, U.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Bunning, T. J.

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Bustard, P. J.

P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
[Crossref]

Cattaneo, L.

Cerqua, K. A.

Chang, H. J.

Chang, S.-W.

Chang-Hasnain, C. J.

Chen, C.-W.

Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals,” Opt. Express 24(10), 10458–10465 (2016).
[Crossref] [PubMed]

I. C. Khoo, C.-W. Chen, and T.-J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Cheng, C. Y.

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Chigrinov, V. G.

Chuang, S.-L.

Colman, P.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Combrié, S.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

De Rossi, A.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

de Sterke, M.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

DeLong, K. W.

Eggleton, B. J.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

J. T. Mok, C. Martijn de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[Crossref]

England, D. G.

P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
[Crossref]

Fainman, Y.

Forget, N.

Fu, H.-W.

Fu, S.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Grabielle, S.

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Guardalben, M. J.

Ha, N. Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, “Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal,” Opt. Lett. 29(22), 2644–2646 (2004).
[Crossref] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Heshami, K.

P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
[Crossref]

Ho, T.-J.

I. C. Khoo, C.-W. Chen, and T.-J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

Huignard, J.-P.

Hunter, J.

Huot, N.

Husko, C.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Hwang, J.

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Ishikawa, K.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Jacobs, S. D.

Jau, H.-C.

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Jeong, S. M.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Jullien, A.

Khoo, I. C.

Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals,” Opt. Express 24(10), 10458–10465 (2016).
[Crossref] [PubMed]

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

I. C. Khoo, C.-W. Chen, and T.-J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

J. Ptasinski, S. W. Kim, L. Pang, I. C. Khoo, and Y. Fainman, “Optical tuning of silicon photonic structures with nematic liquid crystal claddings,” Opt. Lett. 38(12), 2008–2010 (2013).
[Crossref] [PubMed]

L. Song, S. Fu, Y. Liu, J. Zhou, V. G. Chigrinov, and I. C. Khoo, “Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal,” Opt. Lett. 38(23), 5040–5042 (2013).
[Crossref] [PubMed]

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[Crossref]

Kim, S. W.

Kimel, A.

Ku, P.-C.

Larat, C.

Leng, S. E.

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Li, C.-C.

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Li, Q.

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Li, T.

Li, Y.

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Lin, T. H.

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T. H. Lin, and I. C. Khoo, “Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals,” Opt. Express 24(10), 10458–10465 (2016).
[Crossref] [PubMed]

Littler, I. C. M.

J. T. Mok, C. Martijn de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[Crossref]

Liu, Y.

Loiseaux, B.

Lu, G.-W.

K. S. Abedin, G.-W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44(1), 16–17 (2008).
[Crossref]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Ma, C.-J.

Marshall, K. L.

Martijn de Sterke, C.

J. T. Mok, C. Martijn de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[Crossref]

McConney, M. E.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Miyazaki, T.

K. S. Abedin, G.-W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44(1), 16–17 (2008).
[Crossref]

Mok, J. T.

J. T. Mok, C. Martijn de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[Crossref]

Monat, C.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

Muševic, I.

Natarajan, L. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Nishimura, S.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Ohtsuka, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Palinginis, P.

Pang, L.

Park, B.

Ptasinski, J.

Rasing, T.

Ren, L.-Y.

Residori, S.

Sagnes, I.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Sanner, N.

Savoini, M.

Schmid, A.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Sedgwick, F.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Skerrett, K. J.

Song, L.

Spanner, M.

P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
[Crossref]

Sussman, B. J.

P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
[Crossref]

Suzaki, G.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Tabiryan, N. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Takanishi, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Takezoe, H.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Trebino, R.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Wang, C. T.

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Wang, C.-Y.

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

Wang, H.

Wang, L.

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Wang, Y.-L.

Wen, J.

White, T. J.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

White, W. E.

Wong, C. W.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Wu, J. W.

Wu, Y.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Xu, Y.-P.

Zheng, Z.-G.

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Zhou, H.

Zhou, J.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

K. S. Abedin, G.-W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44(1), 16–17 (2008).
[Crossref]

J. Mater. Chem. (1)

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

J. Opt. (1)

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nat. Phys. (1)

J. T. Mok, C. Martijn de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[Crossref]

Nature (3)

Z.-G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rep. (1)

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[Crossref]

Phys. Rev. A (1)

P. J. Bustard, K. Heshami, D. G. England, M. Spanner, and B. J. Sussman, “Raman-induced slow-light delay of THz-bandwidth pulses,” Phys. Rev. A 93(4), 043810 (2016).
[Crossref]

Phys. Rev. Lett. (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

Sci. Rep. (2)

C.-Y. Wang, C.-W. Chen, H.-C. Jau, C.-C. Li, C. Y. Cheng, C. T. Wang, S. E. Leng, I. C. Khoo, and T. H. Lin, “All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Sci. Rep. 6(1), 30873 (2016).
[Crossref] [PubMed]

I. C. Khoo, C.-W. Chen, and T.-J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

Other (1)

I. C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific Publishing, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic depiction of a cholesteric liquid crystal cell (CLC) that exhibits 1D photonic crystal (Bragg grating) properties suitable for self-action femtoseconds laser pulse modulation without additional optics. (b) Plots of group velocity dω/dk and wavevector k as function of the optical wavelength in the vicinity of the photonic bandgap showing the dramatic changes in group velocity near the band edges based on an ideal CLC with no = 1.4839, ne = 1.5872, and p = 547.6 nm.

Fig. 2
Fig. 2

(a) CLC with focal conic structure as a result of director axis deviating from planar alignment. (b) Random orientation of director axis in the isotropic liquid phase; AC voltage begins. (c) Sample cooling down to ordered phase; AC field enforces planar alignment initiated by surface anchoring forces. (d) AC field removed after ~12 hours at room temperature.

Fig. 3
Fig. 3

(a) Photograph of two CLC cells on top of some color background. [Left] Highly scattering (opaque) 200 μm thick focal conic texture by conventional self-assembly; [Right] Transparent (low-scattering) planar CLC cell fabricated with the field assisted self-assembly (FASA) technique. (b) Typical transmission spectra of randomly polarized light at normal incidence of two 550 μm thick planar CLC cells made with the FASA technique showing the photonic bandgap experienced by the left circularly polarized (LHCP) component; loss far away from the band edges is due mainly to reflections from uncoated cells surfaces.

Fig. 4
Fig. 4

(a) Experimental setup for measuring slow-down of linearly polarized 650 fs laser pulses by the CLC-1 cell. Note that the SFG signal detected by the spectrometer can be generated only if the gate and probe pulses overlap spatially. NL: normal light; SL: slow light; BBO: beta barium borate crystal for SFG. Insert on the right hand side depicts typical SFG signal for a 650 fs probe pulse. (b) Transmission spectrum of CLC-1 as a function of the tilt angle. The photonic bandgap shifts towards the short wavelength region so that the laser wavelength is located closer to the band edge. (c) Exit normal (blue) and slow (red) light pulses extracted from the SFG signal for the case when the CLC-1 cell is tilted at increasing angle θ away from the normal direction.

Metrics