Abstract

Ytterbium (Yb3+)-doped oxyfluoride SiO2-Al2O3-CdF2-PbF2-YF3 glass and nano-glass-ceramic (i.e. glass-ceramics containing nanocrystals) single-index optical fibers were fabricated using two methods: by traditional glass preform drawing and by the crucible technique (‘direct-melt process’). The latter technique permitted the fabrication of perfectly vitreous optical fibers (of about 200 µm diameter), leading subsequently to the fabrication of nano glass-ceramic fibers by a well-controlled heat-treatment process above the glass transition temperature. Structural characterizations have (i) confirmed the vitreous state (absence of crystals) of the glass preforms and the glass fiber obtained from the ‘direct-melt process’ and, (ii) evidenced the formation of Pb1-x-y-zCdxYyYbzF2 (x + y + z ≈0.3-0.4) fluorite nanocrystals in the final glass-ceramic fibers. In particular, the nanocrystal size was found to be rather homogenous and smaller than 10 nm from TEM measurements for the nano-glass-ceramic fibers produced by controlled crystallization. The absolute photoluminescence quantum efficiency, mean fluorescence wavelength and anti-Stokes fluorescence of the Yb3+-doped fibers were measured upon laser excitation at wavelengths of 940 nm, 975 nm and 1030 nm, respectively. As expected, higher photoluminescence quantum yield in the near infrared (0.95, close to unity) was obtained for the nano-glass-ceramic fiber when compared with the glass-fiber. Theoretical calculations were also carried out, showing that optical refrigeration would be achievable from these chemically stable and durable nano-glass-ceramic fibers provided that 95% (segregation ratio) of Yb3+ ions are incorporated into the fluorite nanocrystals.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2.7 μm emission in Er3+-doped transparent tellurite glass ceramics

S. L. Kang, D. D. Chen, Q. W. Pan, J. R. Qiu, and G. P. Dong
Opt. Mater. Express 6(6) 1861-1870 (2016)

Ytterbium-doped glass-ceramics for optical refrigeration

Elton Soares de Lima Filho, Kummara Venkata Krishnaiah, Yannick Ledemi, Ye-Jin Yu, Younes Messaddeq, Galina Nemova, and Raman Kashyap
Opt. Express 23(4) 4630-4640 (2015)

Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals

JiangKun Cao, LiPing Chen, WeiPing Chen, DengKe Xu, XinYuan Sun, and Hai Guo
Opt. Mater. Express 6(7) 2201-2206 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
    [Crossref]
  2. M. Ferrari and G. C. Righini, “Glass-Ceramic Materials for Guided-Wave Optics,” Int. J. Appl. Glass Sci. 6(3), 240–248 (2015).
    [Crossref]
  3. S. Fujita and S. Tanabe, “Glass-Ceramics and Solid-State Lighting,” Int. J. Appl. Glass Sci. 6(4), 356–363 (2015).
    [Crossref]
  4. C. Liu and J. Heo, “Nanocrystal Formation in Glasses Controlled by Rare Earth Ions,” Int. J. Appl. Glass Sci. 5(2), 104–113 (2014).
    [Crossref]
  5. A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132(12), 1165–1173 (2011).
    [Crossref]
  6. P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluor. Chem. 172, 22–50 (2015).
    [Crossref]
  7. Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
    [Crossref] [PubMed]
  8. Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
    [Crossref]
  9. Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn. 120(1407), 458–466 (2012).
    [Crossref]
  10. S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
    [Crossref]
  11. Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
    [Crossref]
  12. C. Rüssel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses,” Chem. Mater. 17(23), 5843–5847 (2005).
    [Crossref]
  13. G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
    [Crossref]
  14. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [Crossref]
  15. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
    [Crossref]
  16. A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Laser cooling of Er3+-doped low-phonon materials: Current status and outlook,” Opt. Mater. 31(7), 1075–1081 (2009).
    [Crossref]
  17. E. S. Filho, K. V. Krishnaiah, Y. Ledemi, Y. J. Yu, Y. Messaddeq, G. Nemova, and R. Kashyap, “Ytterbium-doped glass-ceramics for optical refrigeration,” Opt. Express 23(4), 4630–4640 (2015).
    [Crossref] [PubMed]
  18. M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
    [Crossref]
  19. G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  20. H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express 20(27), 28672–28682 (2012).
    [Crossref] [PubMed]
  21. Y. Joeng, Y. Kim, A. Liem, K. Moerl, S. Hoefer, A. Tuennermann, and K. Oh, “Q-switching of Yb3+-doped fiber laser using a novel micro-optical waveguide on microactuating platform light modulator,” Opt. Express 13(25), 10302–10309 (2005).
    [Crossref] [PubMed]
  22. M. Bashkansky, M. Duncan, L. Goldberg, J. Koplow, and J. Reintjes, “Characteristics of a Yb-doped superfluorescent fiber source for use in optical coherence tomography,” Opt. Express 3(8), 305–310 (1998).
    [Crossref] [PubMed]
  23. G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26(12), 2237–2241 (2009).
    [Crossref]
  24. D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
    [Crossref]
  25. Q. Sheng, X. Wang, and D. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transf. 141, 9–13 (2014).
    [Crossref]
  26. S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
    [Crossref]
  27. M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
    [Crossref]
  28. P. A. Tick, “Are low-loss glass ceramic optical waveguides possible?” Opt. Lett. 23(24), 1904–1905 (1998).
    [Crossref] [PubMed]
  29. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26(3), 145–147 (2001).
    [Crossref] [PubMed]
  30. P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
    [Crossref]
  31. M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323-324, 245–249 (2001).
    [Crossref]
  32. G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
    [Crossref]
  33. G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” J. Mater. Res. 20(02), 472–481 (2005).
    [Crossref]
  34. K. V. Krishnaiah, E. S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of ytterbium-doped oxyfluoride glasses for laser cooling applications,” Sci. Rep. 6(1), 21905 (2016).
    [Crossref] [PubMed]
  35. G. Nemova, Laser Cooling: Fundamental Properties and Application, G. Nemova, ed. (Pan Stanford Publishing, 2016), chapter 2.
  36. G. Nemova and R. Kashyap, “Laser cooling with Tm3+-doped oxy-fluoride glass ceramic,” J. Opt. Soc. Am. B 29(11), 3034–3038 (2012).
    [Crossref]
  37. P. Zhang, J. Yin, B. Zhang, L. Zhang, J. Hong, J. He, and Y. Hang, “Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal,” Opt. Lett. 39(13), 3942–3945 (2014).
    [Crossref] [PubMed]
  38. Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics,” J. Mater. Sci. 33(1), 63–67 (1998).
    [Crossref]
  39. G. Nemova and R. Kashyap, “Temperature distribution in laser-cooled rare-earth doped solid-state samples,” J. Opt. Soc. Am. B 27(12), 2460–2464 (2010).
    [Crossref]
  40. P. Yan, M. Gong, C. Li, P. Ou, and A. Xu, “Distributed pumping multifiber series fiber laser,” Opt. Express 13(7), 2699–2706 (2005).
    [Crossref] [PubMed]
  41. S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
    [Crossref]
  42. R. W. Cheary and A. Coelho, “A fundamental parameters approach to x-ray line-profile fitting,” J. Appl. Cryst. 25(2), 109–121 (1992).
    [Crossref]
  43. N. H. Kolderup, “Crystal structure of fluorides of divalent metals,” Mineralogical Abstracts 3, 340 (1924).
  44. H. M. Haendler and W. J. Bernard, “The reaction of fluorine with cadmium and some of its binary compounds - the crystal structure, density and melting point of cadmium fluoride,” J. Am. Chem. Soc. 73(11), 5218–5219 (1951).
    [Crossref]
  45. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  46. T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
    [Crossref]
  47. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
    [Crossref]
  48. F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, “Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals,” Opt. Mater. 4(1), 35–41 (1994).
    [Crossref]
  49. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  50. G. Nemova and R. Kashyap, “Optimization of optical refrigeration in Yb3+: YAG samples,” J. Lumin. 164, 99–104 (2015).
    [Crossref]

2016 (1)

K. V. Krishnaiah, E. S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of ytterbium-doped oxyfluoride glasses for laser cooling applications,” Sci. Rep. 6(1), 21905 (2016).
[Crossref] [PubMed]

2015 (8)

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

M. Ferrari and G. C. Righini, “Glass-Ceramic Materials for Guided-Wave Optics,” Int. J. Appl. Glass Sci. 6(3), 240–248 (2015).
[Crossref]

S. Fujita and S. Tanabe, “Glass-Ceramics and Solid-State Lighting,” Int. J. Appl. Glass Sci. 6(4), 356–363 (2015).
[Crossref]

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluor. Chem. 172, 22–50 (2015).
[Crossref]

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

G. Nemova and R. Kashyap, “Optimization of optical refrigeration in Yb3+: YAG samples,” J. Lumin. 164, 99–104 (2015).
[Crossref]

E. S. Filho, K. V. Krishnaiah, Y. Ledemi, Y. J. Yu, Y. Messaddeq, G. Nemova, and R. Kashyap, “Ytterbium-doped glass-ceramics for optical refrigeration,” Opt. Express 23(4), 4630–4640 (2015).
[Crossref] [PubMed]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

2014 (6)

P. Zhang, J. Yin, B. Zhang, L. Zhang, J. Hong, J. He, and Y. Hang, “Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal,” Opt. Lett. 39(13), 3942–3945 (2014).
[Crossref] [PubMed]

C. Liu and J. Heo, “Nanocrystal Formation in Glasses Controlled by Rare Earth Ions,” Int. J. Appl. Glass Sci. 5(2), 104–113 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Q. Sheng, X. Wang, and D. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transf. 141, 9–13 (2014).
[Crossref]

2013 (1)

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
[Crossref]

2012 (6)

D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
[Crossref]

Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn. 120(1407), 458–466 (2012).
[Crossref]

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[Crossref]

G. Nemova and R. Kashyap, “Laser cooling with Tm3+-doped oxy-fluoride glass ceramic,” J. Opt. Soc. Am. B 29(11), 3034–3038 (2012).
[Crossref]

H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express 20(27), 28672–28682 (2012).
[Crossref] [PubMed]

2011 (2)

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132(12), 1165–1173 (2011).
[Crossref]

2010 (2)

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

G. Nemova and R. Kashyap, “Temperature distribution in laser-cooled rare-earth doped solid-state samples,” J. Opt. Soc. Am. B 27(12), 2460–2464 (2010).
[Crossref]

2009 (3)

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26(12), 2237–2241 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Laser cooling of Er3+-doped low-phonon materials: Current status and outlook,” Opt. Mater. 31(7), 1075–1081 (2009).
[Crossref]

2006 (1)

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

2005 (4)

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” J. Mater. Res. 20(02), 472–481 (2005).
[Crossref]

C. Rüssel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses,” Chem. Mater. 17(23), 5843–5847 (2005).
[Crossref]

P. Yan, M. Gong, C. Li, P. Ou, and A. Xu, “Distributed pumping multifiber series fiber laser,” Opt. Express 13(7), 2699–2706 (2005).
[Crossref] [PubMed]

Y. Joeng, Y. Kim, A. Liem, K. Moerl, S. Hoefer, A. Tuennermann, and K. Oh, “Q-switching of Yb3+-doped fiber laser using a novel micro-optical waveguide on microactuating platform light modulator,” Opt. Express 13(25), 10302–10309 (2005).
[Crossref] [PubMed]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2001 (2)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323-324, 245–249 (2001).
[Crossref]

B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26(3), 145–147 (2001).
[Crossref] [PubMed]

2000 (1)

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

1999 (1)

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

1998 (3)

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

1994 (1)

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, “Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals,” Opt. Mater. 4(1), 35–41 (1994).
[Crossref]

1993 (1)

Y. H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[Crossref]

1992 (1)

R. W. Cheary and A. Coelho, “A fundamental parameters approach to x-ray line-profile fitting,” J. Appl. Cryst. 25(2), 109–121 (1992).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1951 (1)

H. M. Haendler and W. J. Bernard, “The reaction of fluorine with cadmium and some of its binary compounds - the crystal structure, density and melting point of cadmium fluoride,” J. Am. Chem. Soc. 73(11), 5218–5219 (1951).
[Crossref]

1924 (1)

N. H. Kolderup, “Crystal structure of fluorides of divalent metals,” Mineralogical Abstracts 3, 340 (1924).

Abouraddy, A. F.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Allix, M.

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, “Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals,” Opt. Mater. 4(1), 35–41 (1994).
[Crossref]

Avramov, I.

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

Badding, J. V.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Balda, R.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Laser cooling of Er3+-doped low-phonon materials: Current status and outlook,” Opt. Mater. 31(7), 1075–1081 (2009).
[Crossref]

Ballato, J.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Barnett, T.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Bashkansky, M.

Beall, G. H.

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

Bernard, W. J.

H. M. Haendler and W. J. Bernard, “The reaction of fluorine with cadmium and some of its binary compounds - the crystal structure, density and melting point of cadmium fluoride,” J. Am. Chem. Soc. 73(11), 5218–5219 (1951).
[Crossref]

Bhadra, S. K.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Borrelli, N. F.

B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26(3), 145–147 (2001).
[Crossref] [PubMed]

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

Boyland, A. J.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Bysakh, S.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Cardinal, T.

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Chang, G.

Chateau, C.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323-324, 245–249 (2001).
[Crossref]

Cheary, R. W.

R. W. Cheary and A. Coelho, “A fundamental parameters approach to x-ray line-profile fitting,” J. Appl. Cryst. 25(2), 109–121 (1992).
[Crossref]

Chen, D.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Q. Sheng, X. Wang, and D. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transf. 141, 9–13 (2014).
[Crossref]

Chen, H.-W.

Chenu, S.

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Coelho, A.

R. W. Cheary and A. Coelho, “A fundamental parameters approach to x-ray line-profile fitting,” J. Appl. Cryst. 25(2), 109–121 (1992).
[Crossref]

Dantelle, G.

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” J. Mater. Res. 20(02), 472–481 (2005).
[Crossref]

Danto, S.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Das, S.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

de Lima Filho, E. S.

K. V. Krishnaiah, E. S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of ytterbium-doped oxyfluoride glasses for laser cooling applications,” Sci. Rep. 6(1), 21905 (2016).
[Crossref] [PubMed]

Dong, G.

Dorosz, D.

D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
[Crossref]

Dorosz, J.

D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
[Crossref]

Duncan, M.

Ebendorff-Heidepriem, H.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Epstein, R. I.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Etienne, A.

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Fang, Z.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Farrow, R. L.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Fedorov, P. P.

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluor. Chem. 172, 22–50 (2015).
[Crossref]

Fernandez, J.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Laser cooling of Er3+-doped low-phonon materials: Current status and outlook,” Opt. Mater. 31(7), 1075–1081 (2009).
[Crossref]

Ferrari, M.

M. Ferrari and G. C. Righini, “Glass-Ceramic Materials for Guided-Wave Optics,” Int. J. Appl. Glass Sci. 6(3), 240–248 (2015).
[Crossref]

Filho, E. S.

Fink, Y.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Fujita, S.

S. Fujita and S. Tanabe, “Glass-Ceramics and Solid-State Lighting,” Int. J. Appl. Glass Sci. 6(4), 356–363 (2015).
[Crossref]

Garcia, A.

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

Garcia-Adeva, A. J.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Laser cooling of Er3+-doped low-phonon materials: Current status and outlook,” Opt. Mater. 31(7), 1075–1081 (2009).
[Crossref]

Gemming, T.

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

Genevois, C.

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

Genotelle, M.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323-324, 245–249 (2001).
[Crossref]

Goldberg, L.

Goldner, P.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323-324, 245–249 (2001).
[Crossref]

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, “Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals,” Opt. Mater. 4(1), 35–41 (1994).
[Crossref]

Gong, M.

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Gredin, P.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132(12), 1165–1173 (2011).
[Crossref]

Haendler, H. M.

H. M. Haendler and W. J. Bernard, “The reaction of fluorine with cadmium and some of its binary compounds - the crystal structure, density and melting point of cadmium fluoride,” J. Am. Chem. Soc. 73(11), 5218–5219 (1951).
[Crossref]

Hang, Y.

He, J.

Hehlen, M. P.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[Crossref]

Heo, J.

C. Liu and J. Heo, “Nanocrystal Formation in Glasses Controlled by Rare Earth Ions,” Int. J. Appl. Glass Sci. 5(2), 104–113 (2014).
[Crossref]

Höche, T.

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

Hoefer, S.

Hong, J.

Huang, S.-W.

Joeng, Y.

Kalita, M. P.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Kanno, R.

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics,” J. Mater. Sci. 33(1), 63–67 (1998).
[Crossref]

Kärtner, F. X.

Kashyap, R.

Kawamoto, Y.

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics,” J. Mater. Sci. 33(1), 63–67 (1998).
[Crossref]

Kim, Y.

Kochanowicz, M.

D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
[Crossref]

Kolderup, N. H.

N. H. Kolderup, “Crystal structure of fluorides of divalent metals,” Mineralogical Abstracts 3, 340 (1924).

Koplow, J.

Krishnaiah, K. V.

K. V. Krishnaiah, E. S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of ytterbium-doped oxyfluoride glasses for laser cooling applications,” Sci. Rep. 6(1), 21905 (2016).
[Crossref] [PubMed]

E. S. Filho, K. V. Krishnaiah, Y. Ledemi, Y. J. Yu, Y. Messaddeq, G. Nemova, and R. Kashyap, “Ytterbium-doped glass-ceramics for optical refrigeration,” Opt. Express 23(4), 4630–4640 (2015).
[Crossref] [PubMed]

Ledemi, Y.

K. V. Krishnaiah, E. S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of ytterbium-doped oxyfluoride glasses for laser cooling applications,” Sci. Rep. 6(1), 21905 (2016).
[Crossref] [PubMed]

E. S. Filho, K. V. Krishnaiah, Y. Ledemi, Y. J. Yu, Y. Messaddeq, G. Nemova, and R. Kashyap, “Ytterbium-doped glass-ceramics for optical refrigeration,” Opt. Express 23(4), 4630–4640 (2015).
[Crossref] [PubMed]

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

Li, C.

Liem, A.

Lim, J.

Liu, C.

C. Liu and J. Heo, “Nanocrystal Formation in Glasses Controlled by Rare Earth Ions,” Int. J. Appl. Glass Sci. 5(2), 104–113 (2014).
[Crossref]

Luginina, A. A.

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluor. Chem. 172, 22–50 (2015).
[Crossref]

Ma, Z.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Massiot, D.

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Matzen, G.

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

Meichenin, D.

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, “Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals,” Opt. Mater. 4(1), 35–41 (1994).
[Crossref]

Melgaard, S. D.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
[Crossref]

Messaddeq, Y.

K. V. Krishnaiah, E. S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of ytterbium-doped oxyfluoride glasses for laser cooling applications,” Sci. Rep. 6(1), 21905 (2016).
[Crossref] [PubMed]

E. S. Filho, K. V. Krishnaiah, Y. Ledemi, Y. J. Yu, Y. Messaddeq, G. Nemova, and R. Kashyap, “Ytterbium-doped glass-ceramics for optical refrigeration,” Opt. Express 23(4), 4630–4640 (2015).
[Crossref] [PubMed]

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

Moerl, K.

Moore, S. W.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Mortier, M.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132(12), 1165–1173 (2011).
[Crossref]

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” J. Mater. Res. 20(02), 472–481 (2005).
[Crossref]

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323-324, 245–249 (2001).
[Crossref]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Nemova, G.

Nunes, L. A.

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

Oh, K.

Ohwaki, J.

Y. H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[Crossref]

Ou, P.

Pal, M.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Patriarche, G.

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” J. Mater. Res. 20(02), 472–481 (2005).
[Crossref]

Patzig, C.

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

Paul, M. C.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Pelle, F.

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, “Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals,” Opt. Mater. 4(1), 35–41 (1994).
[Crossref]

Peng, W.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Pinckney, L. R.

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

Popov, A. I.

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluor. Chem. 172, 22–50 (2015).
[Crossref]

Qiu, J.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics,” J. Mater. Sci. 33(1), 63–67 (1998).
[Crossref]

Qiu, J. R.

Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn. 120(1407), 458–466 (2012).
[Crossref]

Reaney, I. M.

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

Reichardt, T. A.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Reintjes, J.

Righini, G. C.

M. Ferrari and G. C. Righini, “Glass-Ceramic Materials for Guided-Wave Optics,” Int. J. Appl. Glass Sci. 6(3), 240–248 (2015).
[Crossref]

Rivera, V. A. G.

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

Russel, C.

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

Rüssel, C.

C. Rüssel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses,” Chem. Mater. 17(23), 5843–5847 (2005).
[Crossref]

Sahu, J. K.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Samson, B. N.

Schimpf, D. N.

Seletskiy, D. V.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[Crossref]

Serier-Brault, H.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132(12), 1165–1173 (2011).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Sharafudeen, K.

Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn. 120(1407), 458–466 (2012).
[Crossref]

Sheik-Bahae, M.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

Sheng, Q.

Q. Sheng, X. Wang, and D. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transf. 141, 9–13 (2014).
[Crossref]

Stevenson, A. J.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132(12), 1165–1173 (2011).
[Crossref]

Stolyarov, A. M.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Tanabe, S.

S. Fujita and S. Tanabe, “Glass-Ceramics and Solid-State Lighting,” Int. J. Appl. Glass Sci. 6(4), 356–363 (2015).
[Crossref]

Tao, G. M.

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Teng, Y.

Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn. 120(1407), 458–466 (2012).
[Crossref]

Tick, P. A.

Trudel, A. A.

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

Tuennermann, A.

Veron, E.

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Vivien, D.

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” J. Mater. Res. 20(02), 472–481 (2005).
[Crossref]

Wang, X.

Q. Sheng, X. Wang, and D. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transf. 141, 9–13 (2014).
[Crossref]

Wang, Y. H.

Y. H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[Crossref]

Wurth, R.

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

Xu, A.

Yan, P.

Yin, J.

Yoo, S.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Yu, Y. J.

Zajac, A.

D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
[Crossref]

Zhang, B.

Zhang, H.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Zhang, L.

Zhang, P.

Zheng, S.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Zhou, S.

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, G. Dong, S. Zhou, D. Chen, and J. Qiu, “Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment,” Opt. Express 23(22), 28258–28263 (2015).
[Crossref] [PubMed]

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

Zhou, S. F.

Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn. 120(1407), 458–466 (2012).
[Crossref]

Zmojda, J.

D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
[Crossref]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Adv. Opt. Photonics (2)

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[Crossref]

G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Advanced Optical Materials (1)

S. Chenu, E. Veron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, “Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics,” Advanced Optical Materials 2(4), 364–372 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Y. H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[Crossref]

Bull. Pol. Acad. Sci. Tech. Sci. (1)

D. Dorosz, J. Dorosz, A. Zajac, J. Zmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources,” Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 673–682 (2012).
[Crossref]

Chem. Mater. (1)

C. Rüssel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses,” Chem. Mater. 17(23), 5843–5847 (2005).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Cryst. Growth Des. (1)

T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Russel, and I. Avramov, “Temporal Evolution of Diffusion Barriers Surrounding ZrTiO4 Nuclei in Lithia Aluminosilicate Glass-Ceramics,” Cryst. Growth Des. 12(3), 1556–1563 (2012).
[Crossref]

Int. J. Appl. Glass Sci. (3)

M. Ferrari and G. C. Righini, “Glass-Ceramic Materials for Guided-Wave Optics,” Int. J. Appl. Glass Sci. 6(3), 240–248 (2015).
[Crossref]

S. Fujita and S. Tanabe, “Glass-Ceramics and Solid-State Lighting,” Int. J. Appl. Glass Sci. 6(4), 356–363 (2015).
[Crossref]

C. Liu and J. Heo, “Nanocrystal Formation in Glasses Controlled by Rare Earth Ions,” Int. J. Appl. Glass Sci. 5(2), 104–113 (2014).
[Crossref]

J. Alloys Compd. (1)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323-324, 245–249 (2001).
[Crossref]

J. Am. Ceram. Soc. (2)

Z. Fang, S. Zheng, W. Peng, H. Zhang, Z. Ma, S. Zhou, D. Chen, and J. Qiu, “Fabrication and Characterization of Glass-Ceramic Fiber-Containing Cr3+-Doped ZnAl2O4 Nanocrystals,” J. Am. Ceram. Soc. 98(9), 2772–2775 (2015).
[Crossref]

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

H. M. Haendler and W. J. Bernard, “The reaction of fluorine with cadmium and some of its binary compounds - the crystal structure, density and melting point of cadmium fluoride,” J. Am. Chem. Soc. 73(11), 5218–5219 (1951).
[Crossref]

J. Appl. Cryst. (1)

R. W. Cheary and A. Coelho, “A fundamental parameters approach to x-ray line-profile fitting,” J. Appl. Cryst. 25(2), 109–121 (1992).
[Crossref]

J. Ceram. Soc. Jpn. (1)

Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn. 120(1407), 458–466 (2012).
[Crossref]

J. Fluor. Chem. (2)

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132(12), 1165–1173 (2011).
[Crossref]

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluor. Chem. 172, 22–50 (2015).
[Crossref]

J. Lumin. (1)

G. Nemova and R. Kashyap, “Optimization of optical refrigeration in Yb3+: YAG samples,” J. Lumin. 164, 99–104 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

S. Chenu, E. Veron, C. Genevois, A. Garcia, G. Matzen, and M. Allix, “Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(46), 10002–10010 (2014).
[Crossref]

Y. Ledemi, A. A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, L. A. Nunes, M. Allix, and Y. Messaddeq, “White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 5046–5056 (2014).
[Crossref]

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for Optical Cryocoolers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7471–7478 (2013).
[Crossref]

J. Mater. Res. (1)

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” J. Mater. Res. 20(02), 472–481 (2005).
[Crossref]

J. Mater. Sci. (1)

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics,” J. Mater. Sci. 33(1), 63–67 (1998).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Quant. Spectrosc. Radiat. Transf. (1)

Q. Sheng, X. Wang, and D. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transf. 141, 9–13 (2014).
[Crossref]

J. Solid State Chem. (1)

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

Laser Photonics Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[Crossref]

Materials Science and Engineering B-Advanced Functional Solid-State Materials (1)

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Materials Science and Engineering B-Advanced Functional Solid-State Materials 175(2), 108–119 (2010).
[Crossref]

Mineralogical Abstracts (1)

N. H. Kolderup, “Crystal structure of fluorides of divalent metals,” Mineralogical Abstracts 3, 340 (1924).

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Opt. Commun. (1)

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. (3)

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Laser cooling of Er3+-doped low-phonon materials: Current status and outlook,” Opt. Mater. 31(7), 1075–1081 (2009).
[Crossref]

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, “Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals,” Opt. Mater. 4(1), 35–41 (1994).
[Crossref]

Sci. Rep. (1)

K. V. Krishnaiah, E. S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of ytterbium-doped oxyfluoride glasses for laser cooling applications,” Sci. Rep. 6(1), 21905 (2016).
[Crossref] [PubMed]

Other (1)

G. Nemova, Laser Cooling: Fundamental Properties and Application, G. Nemova, ed. (Pan Stanford Publishing, 2016), chapter 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Final calculated temperature of SiO2-Al2O3-CdF2-PbF2-YF3:YbF3 GC-fiber samples with a diameter of 200 μm as a function of the uniformly distributed pump power. (a): Segregation ratios are 96.0%, 96.5%, 96.7%, 97.0%. (b): Yb3+densities are 4.8 x 108 μm−3, 4.9 x 108 μm−3, 5.0 x 108 μm−3.
Fig. 2
Fig. 2 XRPD patterns of sections of the GC-fiber1 sample collected at different stages of the fiber drawing from the glass preform shown in the curves from the bottom up: (i) in blue (bottom curve), from the stretched drop formed at the very beginning of the process. Inset photographs shows the drop stretched from the preform at 550 °C after a processing time of ~8-10 min; (ii) in black, from the first meter of the stretched fiber and (iii) in red, from the next 3-4 meters of pulled fiber (stable regime of drawing). The lattice parameters and the crystallite size were determined after refinement by using the Lebail method with fluorite structure as a starting model. a and C.S represents lattice parameter and crystal structure, respectively.
Fig. 3
Fig. 3 XRPD diffraction patterns of the G-fiber2, GC-fiber2 and GC-fiber1 samples. GC-fiber2 was obtained by heat-treatment of G-fiber2 at 460 °C for 20h. GC-fiber1 was obtained by glass preform drawing at 550 °C. Lattice parameters and average volume crystallite size were determined by using the Lebail method. Inset: photograph of the fiber samples. The two small and sharp peaks located at 42.5 and 43.5° (2 theta) seem to be related to data collection but remain unexplained.
Fig. 4
Fig. 4 (a) Bright field TEM micrograph of G-fiber2. The corresponding SAED pattern is embedded and shows the amorphous nature of the sample. (b) Bright field TEM micrograph of the GC-fiber2. The corresponding SAED pattern is embedded and shows the presence of nanometer scale crystals. (c) Size distribution and standard deviation (σ) of the crystallites in the GC-fiber2. (d) STEM-HAADF image and related EDS elemental maps for Pb, Cd and Pb-Cd in GC-fiber2. The overlaid EDS maps show the Cd local enrichment of certain parts on several crystallites (white arrows).
Fig. 5
Fig. 5 (a) Normalized photoluminescence spectra (with respect to laser power) of the Yb3+-doped GC-fiber1, G-fiber2 and GC-fiber2 upon 975 nm laser excitation. Inset: Absolute photoluminescence spectra of the G-fiber2 and GC-fiber2 samples upon 940 nm laser excitation. Both fibers are 10 mm long with a 200 µm diameter. (b) Anti-Stokes fluorescence spectra of the G-fiber2 and GC-fiber2 upon laser excitation at 1030 nm (400 mW power). Inset shows the same spectra after maximum intensity normalization for a better comparison.
Fig. 6
Fig. 6 Upconversion emission spectra of the G-fiber2 and GC-fiber2 samples upon laser excitation at 975 nm. The observed emission bands are ascribed to radiative transitions of the Tm3+ and Er3+ ions present as impurity traces in the material. Inset shows blue upconverted light emitted from the G-fiber2 (top) and GC-fiber2 (bottom) (diode power of 250 mW).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V( P cool P heat )=ε σ B S( T r 4 T s 4 ),

Metrics