Abstract

We present a laser machining method based on the use of pulsed Bessel beams to create, by single pass transverse writing, three-dimensional trench-like microstructures on a synthetic monocrystalline diamond substrate. By tuning the laser pulse energy and the writing speed, it is possible to control the features of the surface trenches obtained and to optimize the resulting high aspect-ratio and low roughness microstructures. This work confirms the potentialities of quasi-stationary beams in ultra-fast laser inscription technology. In particular the presented results show the possibility to fabricate deep and precise microfluidic channels on biocompatible diamond substrates, offering a great potential for biomedical sensing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley
Opt. Express 18(2) 566-574 (2010)

Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials

Dawn N. Vitek, Daniel E. Adams, Adrea Johnson, Philbert S. Tsai, Sterling Backus, Charles G. Durfee, David Kleinfeld, and Jeffrey A. Squier
Opt. Express 18(17) 18086-18094 (2010)

High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching

Zhi Wang, Lan Jiang, Xiaowei Li, Andong Wang, Zhulin Yao, Kaihu Zhang, and Yongfeng Lu
Opt. Lett. 43(1) 98-101 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond Photonics,” Nat. Photonics 5(7), 397–405 (2011).
    [Crossref]
  2. B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
    [Crossref] [PubMed]
  3. A. Courvoisier, M. J. Booth, and P. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109(3), 031109 (2016).
    [Crossref]
  4. F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: A review,” Phys. Status Solidi203(13), 3207–3225 (2006) (a).
    [Crossref]
  5. D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age of spintronics,” Sci. Am. 297(4), 84–91 (2007).
    [Crossref] [PubMed]
  6. L. Childress, R. Walsworth, and M. Lukin, “Atom-like defects: from quantum computers to biological sensors,” Phys. Today 67(10), 38–43 (2014).
    [Crossref]
  7. J. J. Gracio, Q. H. Fan, and J. C. Madaleno, “Diamond growth by chemical vapour deposition,” J. Phys. D Appl. Phys. 43(37), 374017 (2010).
    [Crossref]
  8. J. A. Carlisle, “Precious biosensors,” Nat. Mater. 3(10), 668–669 (2004).
    [Crossref] [PubMed]
  9. Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
    [Crossref]
  10. R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
    [Crossref]
  11. M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
    [Crossref] [PubMed]
  12. A. Datta, Y.-R. Wu, and Y. L. Wang, “Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment,” Phys. Rev. B 63(12), 125407 (2001).
    [Crossref]
  13. F. Picollo, A. Battiato, L. Boarino, and S. Ditalia Tchernij, “Fabrication of monolithic microfluidic channels in diamond with ion beam lithography,” Nucl. Instr. And Methods in Phys. Research B. in press.
  14. Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
    [Crossref]
  15. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  16. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonics devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
    [Crossref]
  17. A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
    [Crossref]
  18. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  19. Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
    [Crossref]
  20. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  21. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
    [Crossref]
  22. M. K. Kumtumalla, K. Rajamudili, N. R. Desai, and V. V. S. S. Srikanth, “Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface,” Appl. Phys. Lett. 104(16), 161607 (2014).
    [Crossref]
  23. S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
    [Crossref]
  24. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  25. M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
    [Crossref] [PubMed]
  26. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  27. M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
    [Crossref]
  28. M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
    [Crossref]
  29. O. Jedrkiewicz, S. Bonanomi, M. Selva, and P. Di Trapani, “Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices,” Appl. Phys., A Mater. Sci. Process. 120(1), 385–391 (2015).
    [Crossref]
  30. V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
    [Crossref]
  31. M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
    [Crossref]
  32. M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
    [Crossref] [PubMed]
  33. M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
    [Crossref] [PubMed]
  34. Y. Matzuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
    [Crossref]
  35. H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultra-fast ablation and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
    [Crossref]
  36. W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
    [Crossref] [PubMed]
  37. A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
    [Crossref] [PubMed]
  38. C. A. Barrios, “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
    [Crossref] [PubMed]
  39. V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Laser-induced graphitization of diamond,” Appl. Phys., A Mater. Sci. Process. 122(3), 258–263 (2016).
    [Crossref]
  40. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
    [Crossref]
  41. E. Alhadeff and N. Bojorge, Graphite-Composites Alternatives for Electrochemical Biosensor, Metal, Ceramic and Polymeric Composites for Various Uses, Dr. John Cuppoletti, ed. IS, InTech (2000), Available from: http://www.intechopen.com/books/metal-ceramic-and-polymericcompositesfor-various-uses/graphite-composites-alternatives-forelectrochemical-biosensor .

2016 (4)

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

A. Courvoisier, M. J. Booth, and P. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109(3), 031109 (2016).
[Crossref]

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Laser-induced graphitization of diamond,” Appl. Phys., A Mater. Sci. Process. 122(3), 258–263 (2016).
[Crossref]

2015 (3)

O. Jedrkiewicz, S. Bonanomi, M. Selva, and P. Di Trapani, “Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices,” Appl. Phys., A Mater. Sci. Process. 120(1), 385–391 (2015).
[Crossref]

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

2014 (3)

L. Childress, R. Walsworth, and M. Lukin, “Atom-like defects: from quantum computers to biological sensors,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

M. K. Kumtumalla, K. Rajamudili, N. R. Desai, and V. V. S. S. Srikanth, “Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface,” Appl. Phys. Lett. 104(16), 161607 (2014).
[Crossref]

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

2013 (1)

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

2012 (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

2011 (2)

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

A. D. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond Photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

2010 (3)

J. J. Gracio, Q. H. Fan, and J. C. Madaleno, “Diamond growth by chemical vapour deposition,” J. Phys. D Appl. Phys. 43(37), 374017 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

2009 (3)

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonics devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

C. A. Barrios, “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

2008 (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age of spintronics,” Sci. Am. 297(4), 84–91 (2007).
[Crossref] [PubMed]

2006 (2)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Y. Matzuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

2004 (5)

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
[Crossref] [PubMed]

J. A. Carlisle, “Precious biosensors,” Nat. Mater. 3(10), 668–669 (2004).
[Crossref] [PubMed]

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
[Crossref]

2003 (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

2002 (3)

Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
[Crossref]

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultra-fast ablation and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[Crossref]

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

2001 (1)

A. Datta, Y.-R. Wu, and Y. L. Wang, “Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment,” Phys. Rev. B 63(12), 125407 (2001).
[Crossref]

2000 (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

1999 (1)

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

1987 (1)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Aharonovich, A. D.

A. D. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond Photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Ando, Y.

Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
[Crossref]

Aprea, A.

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Auciello, O.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Awschalom, D. D.

D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age of spintronics,” Sci. Am. 297(4), 84–91 (2007).
[Crossref] [PubMed]

Barclay, P. E.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Barrios, C. A.

C. A. Barrios, “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Battiato, A.

F. Picollo, A. Battiato, L. Boarino, and S. Ditalia Tchernij, “Fabrication of monolithic microfluidic channels in diamond with ion beam lithography,” Nucl. Instr. And Methods in Phys. Research B. in press.

Bharadwaj, V.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Bhuyan, M. K.

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

Boarino, L.

F. Picollo, A. Battiato, L. Boarino, and S. Ditalia Tchernij, “Fabrication of monolithic microfluidic channels in diamond with ion beam lithography,” Nucl. Instr. And Methods in Phys. Research B. in press.

Bollani, M.

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

Bonanomi, S.

O. Jedrkiewicz, S. Bonanomi, M. Selva, and P. Di Trapani, “Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices,” Appl. Phys., A Mater. Sci. Process. 120(1), 385–391 (2015).
[Crossref]

Booth, M. J.

A. Courvoisier, M. J. Booth, and P. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109(3), 031109 (2016).
[Crossref]

Brown, W. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Butler, J. E.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Cai, W.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Carlisle, J. A.

J. A. Carlisle, “Precious biosensors,” Nat. Mater. 3(10), 668–669 (2004).
[Crossref] [PubMed]

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Catharino, S. C. R.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Chen, X. L.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Chiappini, A.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Childress, L.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like defects: from quantum computers to biological sensors,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Couairon, A.

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

Courvoisier, A.

A. Courvoisier, M. J. Booth, and P. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109(3), 031109 (2016).
[Crossref]

Courvoisier, F.

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

Criante, L.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Datta, A.

A. Datta, Y.-R. Wu, and Y. L. Wang, “Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment,” Phys. Rev. B 63(12), 125407 (2001).
[Crossref]

Desai, N. R.

M. K. Kumtumalla, K. Rajamudili, N. R. Desai, and V. V. S. S. Srikanth, “Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface,” Appl. Phys. Lett. 104(16), 161607 (2014).
[Crossref]

Di Trapani, P.

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

O. Jedrkiewicz, S. Bonanomi, M. Selva, and P. Di Trapani, “Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices,” Appl. Phys., A Mater. Sci. Process. 120(1), 385–391 (2015).
[Crossref]

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
[Crossref] [PubMed]

Ditalia Tchernij, S.

F. Picollo, A. Battiato, L. Boarino, and S. Ditalia Tchernij, “Fabrication of monolithic microfluidic channels in diamond with ion beam lithography,” Nucl. Instr. And Methods in Phys. Research B. in press.

Dubietis, A.

M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
[Crossref] [PubMed]

Dudley, J.

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

Dudley, J. M.

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Durnin, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Eaton, S. M.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Epstein, R.

D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age of spintronics,” Sci. Am. 297(4), 84–91 (2007).
[Crossref] [PubMed]

Faccio, D.

M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
[Crossref] [PubMed]

Fan, Q. H.

J. J. Gracio, Q. H. Fan, and J. C. Madaleno, “Diamond growth by chemical vapour deposition,” J. Phys. D Appl. Phys. 43(37), 374017 (2010).
[Crossref]

Fang, R. C.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Fernandez, T. T.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Ferrari, M.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Feulner, P.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Fijalkowski, M.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Filipczak, P.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Frolov, V.

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Furfaro, L.

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Galzerano, G.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Garcia, M. E.

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultra-fast ablation and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[Crossref]

Garrido, J. A.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Garzillo, V.

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gattass, R. R.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

Gerbi, J. E.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Gogolinsky, K.

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Gololobov, V. M.

V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Laser-induced graphitization of diamond,” Appl. Phys., A Mater. Sci. Process. 122(3), 258–263 (2016).
[Crossref]

Gracio, J. J.

J. J. Gracio, Q. H. Fan, and J. C. Madaleno, “Diamond growth by chemical vapour deposition,” J. Phys. D Appl. Phys. 43(37), 374017 (2010).
[Crossref]

Greentree, A. D.

A. D. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond Photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Grigutis, R.

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

Gronmaier, R.

R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
[Crossref]

Gruen, D. M.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Hadden, J. P.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Hamers, R. J.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Hanson, R.

D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age of spintronics,” Sci. Am. 297(4), 84–91 (2007).
[Crossref] [PubMed]

Härtl, A.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Hernando, J.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hirao, T.

Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
[Crossref]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Hupert, M. L.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Inoue, T.

Y. Matzuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

Jackson, J. M.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Jacquot, M.

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Jedrkiewicz, O.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

O. Jedrkiewicz, S. Bonanomi, M. Selva, and P. Di Trapani, “Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices,” Appl. Phys., A Mater. Sci. Process. 120(1), 385–391 (2015).
[Crossref]

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

Jelezko, F.

F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: A review,” Phys. Status Solidi203(13), 3207–3225 (2006) (a).
[Crossref]

Jeschke, H. O.

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultra-fast ablation and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[Crossref]

Jukna, V.

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

Kamande, J.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Karabutov, A.

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Karczemska, A.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Kizuka, Y.

Y. Matzuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

Knickerbocker, T.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Kobashi, K.

Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
[Crossref]

Kohn, E.

R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
[Crossref]

Kononenko, V. V.

V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Laser-induced graphitization of diamond,” Appl. Phys., A Mater. Sci. Process. 122(3), 258–263 (2016).
[Crossref]

Konov, V. I.

V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Laser-induced graphitization of diamond,” Appl. Phys., A Mater. Sci. Process. 122(3), 258–263 (2016).
[Crossref]

KozaneckI, M.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Kromka, A.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Kumtumalla, M. K.

M. K. Kumtumalla, K. Rajamudili, N. R. Desai, and V. V. S. S. Srikanth, “Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface,” Appl. Phys. Lett. 104(16), 161607 (2014).
[Crossref]

Lacourt, P.-A.

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[Crossref] [PubMed]

Laporta, P.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonics devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Lasseter, T. L.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Lee, G. C. B.

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

Li, J.

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

Liao, Y.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Longhi, S.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Lukin, M.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like defects: from quantum computers to biological sensors,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Lysko, J. M.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Ma, Y. R.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Madaleno, J. C.

J. J. Gracio, Q. H. Fan, and J. C. Madaleno, “Diamond growth by chemical vapour deposition,” J. Phys. D Appl. Phys. 43(37), 374017 (2010).
[Crossref]

Malshe, A. P.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Matzuoka, Y.

Y. Matzuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

Mazur, E.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Mikutis, M.

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

Milowsky, M. I.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Mitura, S.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Miura, K.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Molian, P. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Müller, R.

R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
[Crossref]

Munding, A.

R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
[Crossref]

Nishibayashi, Y.

Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
[Crossref]

Osellame, R.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonics devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Oura, K.

Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
[Crossref]

Ozkan, A. M.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Parola, A.

M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
[Crossref] [PubMed]

Phing, H. S.

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

Picollo, F.

F. Picollo, A. Battiato, L. Boarino, and S. Ditalia Tchernij, “Fabrication of monolithic microfluidic channels in diamond with ion beam lithography,” Nucl. Instr. And Methods in Phys. Research B. in press.

Porras, M. A.

M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
[Crossref] [PubMed]

Prawer, S.

A. D. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond Photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Railkar, T. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Rajamudili, K.

M. K. Kumtumalla, K. Rajamudili, N. R. Desai, and V. V. S. S. Srikanth, “Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface,” Appl. Phys. Lett. 104(16), 161607 (2014).
[Crossref]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Ralchenko, V.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Ralchenko, Y.

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Ramponi, R.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Recchia, S.

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Russell, J. N.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Sabonis, V.

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

Sakakura, M.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Salter, P.

A. Courvoisier, M. J. Booth, and P. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109(3), 031109 (2016).
[Crossref]

Salut, R.

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Schmich, E.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Schmid, P.

R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
[Crossref]

Selva, M.

O. Jedrkiewicz, S. Bonanomi, M. Selva, and P. Di Trapani, “Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices,” Appl. Phys., A Mater. Sci. Process. 120(1), 385–391 (2015).
[Crossref]

Shimotsuma, Y.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shinoda, M.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

Shirk, M. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Smith, L. M.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Soper, S. A.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Sotillo, B.

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Sovyk, D.

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Srikanth, V. V. S. S.

M. K. Kumtumalla, K. Rajamudili, N. R. Desai, and V. V. S. S. Srikanth, “Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface,” Appl. Phys. Lett. 104(16), 161607 (2014).
[Crossref]

Stanishevsky, A.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Steinmüller, D.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Stutzmann, M.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Su, S.

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

Sugden, K.

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Valle, G. D.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonics devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Vlasov, I.

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Walock, M.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Walsworth, R.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like defects: from quantum computers to biological sensors,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Walter, S.

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Wang, H.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Wang, K.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Wang, Y. L.

A. Datta, Y.-R. Wu, and Y. L. Wang, “Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment,” Phys. Rev. B 63(12), 125407 (2001).
[Crossref]

Webb, D.

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

Whang, Y. E.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Witek, M. A.

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Withford, M. J.

Wrachtrup, J.

F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: A review,” Phys. Status Solidi203(13), 3207–3225 (2006) (a).
[Crossref]

Wu, Q. H.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Wu, Y.-R.

A. Datta, Y.-R. Wu, and Y. L. Wang, “Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment,” Phys. Rev. B 63(12), 125407 (2001).
[Crossref]

Yang, W.

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

Ye, H.

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

Yu, Q. X.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Yunkin, V.

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Zybala, R.

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

A. Courvoisier, M. J. Booth, and P. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109(3), 031109 (2016).
[Crossref]

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

M. K. Kumtumalla, K. Rajamudili, N. R. Desai, and V. V. S. S. Srikanth, “Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface,” Appl. Phys. Lett. 104(16), 161607 (2014).
[Crossref]

S. Su, J. Li, G. C. B. Lee, K. Sugden, D. Webb, and H. Ye, “Femtosecond laser-induced microstructures on Diamond for microfluidic sensing device applications,” Appl. Phys. Lett. 102(23), 231913 (2013).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

O. Jedrkiewicz, S. Bonanomi, M. Selva, and P. Di Trapani, “Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices,” Appl. Phys., A Mater. Sci. Process. 120(1), 385–391 (2015).
[Crossref]

Y. Matzuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, and P. Di Trapani, “High-speed laser assisted cutting of strong transparent materials using picosecond Bessel beams,” Appl. Phys., A Mater. Sci. Process. 120(2), 443–446 (2015).
[Crossref]

V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Laser-induced graphitization of diamond,” Appl. Phys., A Mater. Sci. Process. 122(3), 258–263 (2016).
[Crossref]

Appl. Surf. Sci. (1)

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultra-fast ablation and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[Crossref]

Diamond Related Materials (2)

R. Müller, P. Schmid, A. Munding, R. Gronmaier, and E. Kohn, “Elements for surface microfluidics in diamond,” Diamond Related Materials 13(4-8), 780–784 (2004).
[Crossref]

Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura, “Smooth and high-rate reactive ion etching of Diamond,” Diamond Related Materials 11(3-6), 824–827 (2002).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

M. K. Bhuyan, F. Courvoisier, H. S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, and J. Dudley, “Laser micro-and nanostructuring using femtosecond Bessel beams,” Eur. Phys. J. Spec. Top. 199(1), 101–110 (2011).
[Crossref]

J. Appl. Phys. (2)

V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser energy deposition for single-shot high aspect ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 013102 (2016).
[Crossref]

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

J. Nanosci. Nanotechnol. (1)

M. Fijalkowski, A. Karczemska, J. M. Lysko, R. Zybala, M. KozaneckI, P. Filipczak, V. Ralchenko, M. Walock, A. Stanishevsky, and S. Mitura, “Nanostructured Diamond Device for Biomedical Applications,” J. Nanosci. Nanotechnol. 15(2), 1006–1013 (2015).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonics devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. J. Gracio, Q. H. Fan, and J. C. Madaleno, “Diamond growth by chemical vapour deposition,” J. Phys. D Appl. Phys. 43(37), 374017 (2010).
[Crossref]

Laser Photonics Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Microsyst. Technol. (1)

M. L. Hupert, J. M. Jackson, H. Wang, M. A. Witek, J. Kamande, M. I. Milowsky, Y. E. Whang, and S. A. Soper, “Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs),” Microsyst. Technol. 20(10-11), 1815–1825 (2014).
[Crossref] [PubMed]

Nanostructures Thin Films and Nanodispersion Strengthened Coatings (1)

Y. Ralchenko, I. Vlasov, V. Frolov, D. Sovyk, A. Karabutov, K. Gogolinsky, and V. Yunkin, “CVD Diamond Films on Surfaces with Intricate Shape,” Nanostructures Thin Films and Nanodispersion Strengthened Coatings 155, 209–220 (2004).
[Crossref]

Nat. Mater. (3)

J. A. Carlisle, “Precious biosensors,” Nat. Mater. 3(10), 668–669 (2004).
[Crossref] [PubMed]

W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates,” Nat. Mater. 1(4), 253–257 (2002).
[Crossref] [PubMed]

A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater. 3(10), 736–742 (2004).
[Crossref] [PubMed]

Nat. Photonics (2)

A. D. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond Photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

A. Datta, Y.-R. Wu, and Y. L. Wang, “Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment,” Phys. Rev. B 63(12), 125407 (2001).
[Crossref]

Phys. Rev. Lett. (4)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93(15), 153902 (2004).
[Crossref] [PubMed]

Phys. Today (1)

L. Childress, R. Walsworth, and M. Lukin, “Atom-like defects: from quantum computers to biological sensors,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Sci. Am. (1)

D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age of spintronics,” Sci. Am. 297(4), 84–91 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6(1), 35566 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

C. A. Barrios, “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Other (3)

F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: A review,” Phys. Status Solidi203(13), 3207–3225 (2006) (a).
[Crossref]

F. Picollo, A. Battiato, L. Boarino, and S. Ditalia Tchernij, “Fabrication of monolithic microfluidic channels in diamond with ion beam lithography,” Nucl. Instr. And Methods in Phys. Research B. in press.

E. Alhadeff and N. Bojorge, Graphite-Composites Alternatives for Electrochemical Biosensor, Metal, Ceramic and Polymeric Composites for Various Uses, Dr. John Cuppoletti, ed. IS, InTech (2000), Available from: http://www.intechopen.com/books/metal-ceramic-and-polymericcompositesfor-various-uses/graphite-composites-alternatives-forelectrochemical-biosensor .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of the microfabrication part of the experimental set-up.
Fig. 2
Fig. 2 Tilted view SEM images of microtracks machined in single pass on the diamond surface by means of a femtosecond pulsed Bessel beam with core size of about 0.7 μm (FHWM) in air, for different transverse writing speeds and pulse energies. The scale bar for all SEM images is 10 μm. In (a), (b) and (c) the writing speed corresponded to having 280 spatially superimposed pulses. The energy per pulse was E = 3.5 μJ in (a), 7 μJ in (b) and 10 μJ in (c). The tracks in (d), (e) and (f) have been written with E = 7 μJ and with machining speed such to have respectively 28 (d), 9 (e) and 2 (f) spatially superimposed pulses during the sample translation.
Fig. 3
Fig. 3 Top view SEM images of a portion of the trench reported in Fig. 2(a).
Fig. 4
Fig. 4 Top view SEM images of the microchannels formed inside the machined trenches in the conditions of Fig. 2(a), for two different transverse writing directions; respectively parallel (a) and orthogonal (b) to the laser beam polarization. In c) and d) AFM tapping-amplitude images of the labelled (dashed) regions in the SEM images.
Fig. 5
Fig. 5 a) Optical transmission microscope image of a deep trench written by Bessel beam fs laser machining ; b) and c) normalized Raman spectra measured before (blue) and after (red) etching, on a point respectively at the wall and at the bottom center of the machined trench.

Metrics