Abstract

We demonstrate a localized slow light phenomenon in a symmetry broken metamolecule (MM) of conductively coupled dark resonators at a terahertz band. Under a dark-mode excitation condition, the single mode resonance becomes dual modes by breaking the uniaxial symmetry of MM. Thus, a transparency window exists in between dual modes. An interaction of V-shaped plasmonic antenna-type (VA) resonances results in a plasmon-induced transparency (PIT) when the asymmetric deviation is below 13 μm. A maximum 25.9 ps group-delay of incident THz pulse is observed at the transparency window. When the asymmetric deviation is beyond 13 μm, one excitation pathway switches from VA resonance to the inductor-capacitor (LC) resonance, which dominates the high-frequency side-mode. Then, the PIT effect transfers to the PIT-like behavior and the slow light phenomenon vanishes. The aforementioned discovery allows for a speed modulation of slow light via symmetry breaking in MM.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule

Zhenyu Zhao, Xiaobo Zheng, Wei Peng, Jianbing Zhang, Hongwei Zhao, Zhijian Luo, and Wangzhou Shi
Opt. Express 25(20) 24410-24424 (2017)

Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules

Xiaobo Zheng, Zhenyu Zhao, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 7(3) 1035-1047 (2017)

Dual terahertz slow light plateaus in bilayer asymmetric metasurfaces

Zhenyu Zhao, Zhidong Gu, Hui Zhao, and Wangzhou Shi
Opt. Mater. Express 9(4) 1608-1619 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref] [PubMed]
  2. U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
    [Crossref] [PubMed]
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  4. R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
    [Crossref] [PubMed]
  5. P. Grangier, “Quantum information: remember that photon,” Nature 438(7069), 749–750 (2005).
    [Crossref] [PubMed]
  6. T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
    [Crossref]
  7. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  8. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(4), 053901–1053901–4 (2009).
    [Crossref]
  9. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  10. Q. Lin, X. Zhai, L.-L. Wang, X. Luo, G.-D. Liu, J.-P. Liu and S.-X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
    [Crossref]
  11. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
    [Crossref] [PubMed]
  12. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
    [Crossref]
  13. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [Crossref] [PubMed]
  14. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  15. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  16. M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
    [Crossref] [PubMed]
  17. X. Zheng, Z. Zhao, W. Shi, and W. Pen, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
    [Crossref]
  18. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
    [Crossref]
  19. R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
    [Crossref]
  20. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  21. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
    [Crossref]
  22. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
    [Crossref] [PubMed]
  23. S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
    [Crossref]
  24. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  25. X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
    [Crossref]
  26. Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
    [Crossref]
  27. Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
    [Crossref]
  28. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
    [Crossref] [PubMed]
  29. Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
    [Crossref]
  30. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  31. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  32. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  33. R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
    [Crossref]
  34. D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
    [Crossref]

2017 (3)

X. Zheng, Z. Zhao, W. Shi, and W. Pen, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
[Crossref]

2016 (2)

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

2015 (5)

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

2014 (4)

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2012 (3)

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

2011 (5)

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

2008 (1)

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

2006 (1)

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

2005 (2)

P. Grangier, “Quantum information: remember that photon,” Nature 438(7069), 749–750 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

2002 (1)

U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
[Crossref] [PubMed]

2001 (1)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Al-Naib, I.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Ambrosio, A.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
[Crossref]

Aoust, G.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Blanchard, R.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Capasso, F.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chaker, M.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Chen, S.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Cheng, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Christodoulides, D.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Cong, L.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Delprat, S.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Dignam, M. M.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

Duan, X.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

e, Y.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Gaburro, Z.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Genevet, P.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
[Crossref]

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Grangier, P.

P. Grangier, “Quantum information: remember that photon,” Nature 438(7069), 749–750 (2005).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Gu, C.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Gu, J.

Han, J.

He, X.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Hebestreit, E.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Huang, R.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Kats, M. A.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kim, S. M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

Kung, P.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lederer, F.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Leonhardt, U.

U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
[Crossref] [PubMed]

Li, J.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Li, Z.

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, W.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Liu, Z.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Luo, Z.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Ma, Y.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Morandotti, R.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Ozaki, T.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Parvinnezhad Hokmabadi, M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Pen, W.

Peng, W.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Philip, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Rivera, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Rocheleau, D.

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Rockstuhl, C.

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Roy Chowdhury, D.

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Shi, W.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Shi, and W. Pen, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Singh, R.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Song, Y.

Song, Z.

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Tang, C.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tian, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Tian, Z.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Wan, M.

Wang, L.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Wang, Y.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wintz, D.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Xia, X.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Yang, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Yang, S.

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Yang, Y.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zhang, J.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Zhang, L.

Zhang, S.

Zhang, W.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Zhao, H.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Zhao, Z.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Shi, and W. Pen, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Zheng, X.

X. Zheng, Z. Zhao, W. Shi, and W. Pen, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Zhou, F.

Zhu, A. Y.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
[Crossref]

ACS Photonics (1)

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photonics 4(1), 22–27 (2017).
[Crossref]

Appl. Phys. Lett. (5)

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. Al-Naib, D. Roy Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

J. Appl. Phys. (2)

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Nano Lett. (2)

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

Nature (4)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

P. Grangier, “Quantum information: remember that photon,” Nature 438(7069), 749–750 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (3)

Phys. Rev. B (2)

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

S. Yang, Z. Liu, X. Xia, Y. e, C. Tang, Y. Wang, J. Li, L. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci. Rep. (1)

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (4)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(4), 053901–1053901–4 (2009).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Q. Lin, X. Zhai, L.-L. Wang, X. Luo, G.-D. Liu, J.-P. Liu and S.-X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a): Schematic diagram of the elements of MM. (b): The THz transmittance of TSRR and cut-wire under bright and dark excitation condition, and the polarization of incident THz wave. (c): Illustration of the symmetry broken MM. (b): The diagram of THz transmittance measurement.
Fig. 2
Fig. 2 (a): THz transmission of the symmetry broken MM. Blue solid-line: experimental measurement, red solid-line: numerical simulation. (b): The 2-dimensional map of THz transmittance as a function of asymmetric deviation and THz frequency. (c): The frequency-dependent dielectric functions of samples. Purple solid-line: real permittivity εr. Green solid-line: imaginary permittivity εi.
Fig. 3
Fig. 3 (a): The experimental measured THz phase spectra of the symmetry broken MM. (b): The experimental measured THz group delay spectra of the symmetry broken MM. (c): The 2-dimensional map of THz group delay as a function of asymmetric deviation δ and THz frequency.
Fig. 4
Fig. 4 (a): Surface currents of the symmetry broken MM at the mode of νL and of νH. (b): Magnetic field distributions of symmetry broken MM at the mode of νL and of νH. Color bars: The relative strength of currents and magnetic energy.
Fig. 5
Fig. 5 Electric field distributions of symmetry broken MM at the mode of νL and of νH. Color bars: the relative strength of electric energy. Insets: The gold symbols refer to the equivalent V-shaped plasmonic antenna (VA).

Tables (1)

Tables Icon

Table 1 Resonance properties of side-modes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε( ν )= ε r ( ν )+i ε i ( ν ),
Δ t g = 1 2π dφ dν ,
φ= φ T φ ref +kD,
l λ res / ( 2 n res ) .

Metrics