Abstract

There is an upward trend in applying the spatial division multiplexing (SDM) technologies from the telecom field towards multi-functional optical sensing applications attributable to enhanced spatial sensitivity and multi-parameter discriminative proficiency. In addition to our preliminary experimental demonstrations, in this paper we analytically evaluated the performance of few-mode Brillouin sensors via diverse refractive index profiles and dopant material compositions. Our results show five to ten folder improvements on the measurement accuracy associated with the intermodal differential Brillouin frequency shifts, which would be of great importance for sensing in sophisticated target environments. This work pave the way for next-generation mode division multiplexed sensing system design and corresponding high nonlinearity specialty fiber fabrication for structure health monitoring as well as oil and gas pipeline monitoring.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode fiber based optical sensors

An Li, Yifei Wang, Qian Hu, and William Shieh
Opt. Express 23(2) 1139-1150 (2015)

Few-mode optical fiber based simultaneously distributed curvature and temperature sensing

Hao Wu, Ming Tang, Meng Wang, Can Zhao, Zhiyong Zhao, Ruoxu Wang, Ruolin Liao, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(11) 12722-12732 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  2. W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
    [Crossref]
  3. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
    [Crossref] [PubMed]
  4. M. Alahbabi, Y. T. Cho, and T. P. Newson, “Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors,” Opt. Lett. 29(1), 26–28 (2004).
    [Crossref] [PubMed]
  5. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26(12), 59 (2015).
  6. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  7. I. Ashry, A. Wang, and Y. Xu, “Mode-division-multiplexing of absorption-based fiber optical sensors,” Opt. Express 24(5), 5186–5202 (2016).
    [Crossref]
  8. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  9. A. Li, Y. Wang, J. Fang, M.-J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
    [Crossref] [PubMed]
  10. A. Ahrens, A. Sandmann, K. Bremer, B. Roth, and S. Lochmann, “Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach,” Proc. SPIE 9634, 96345W (2015).
    [Crossref]
  11. S. Jain, V. J. F. Rancaño, T. C. May-Smith, P. Petropoulos, J. K. Sahu, and D. J. Richardson, “Multi-element fiber technology for space-division multiplexing applications,” Opt. Express 22(4), 3787–3796 (2014).
    [Crossref] [PubMed]
  12. F. Parnet, J. Fade, and M. Alouini, “Orthogonality breaking through few-mode optical fiber,” Appl. Opt. 55(10), 2508–2520 (2016).
    [Crossref] [PubMed]
  13. K. Y. Song and Y. H. Kim, “Characterization of stimulated Brillouin scattering in a few-mode fiber,” Opt. Lett. 38(22), 4841–4844 (2013).
    [Crossref] [PubMed]
  14. A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref] [PubMed]
  15. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Distributed temperature and strain sensing using spontaneous Brillouin scattering in optical few-mode fibers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper SM2O.5.
    [Crossref]
  16. J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightwave Technol. 30(24), 3946–3952 (2012).
    [Crossref]
  17. H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
    [Crossref] [PubMed]
  18. J. Vuong, P. Ramantanis, Y. Frignac, M. Salsi, P. Genevaux, D. F. Bendimerad, and G. Charlet, “Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber,” Opt. Express 23(2), 1438–1455 (2015).
    [Crossref] [PubMed]
  19. L. Huang, J. Leng, P. Zhou, S. Guo, H. Lü, and X. Cheng, “Adaptive mode control of a few-mode fiber by real-time mode decomposition,” Opt. Express 23(21), 28082–28090 (2015).
    [Crossref] [PubMed]
  20. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few-mode optical fibers,” Opt. Express 21(3), 3170–3181 (2013).
    [Crossref] [PubMed]
  21. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions—from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
    [Crossref] [PubMed]
  22. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [Crossref] [PubMed]
  23. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
    [Crossref]
  24. L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. Pálsdóttir, “Few mode transmission fiber with low DGD, low mode coupling, and low loss,” J. Lightwave Technol. 30(23), 3693–3698 (2012).
    [Crossref]
  25. C. Jollivet, A. Mafi, D. Flamm, M. Duparré, K. Schuster, S. Grimm, and A. Schülzgen, “Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser,” Opt. Express 22(24), 30377–30386 (2014).
    [Crossref] [PubMed]

2016 (4)

2015 (7)

2014 (2)

2013 (4)

C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few-mode optical fibers,” Opt. Express 21(3), 3170–3181 (2013).
[Crossref] [PubMed]

K. Y. Song and Y. H. Kim, “Characterization of stimulated Brillouin scattering in a few-mode fiber,” Opt. Lett. 38(22), 4841–4844 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

2012 (2)

2011 (2)

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

2010 (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

2007 (1)

2004 (1)

Ahrens, A.

A. Ahrens, A. Sandmann, K. Bremer, B. Roth, and S. Lochmann, “Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach,” Proc. SPIE 9634, 96345W (2015).
[Crossref]

Alahbabi, M.

Alouini, M.

Ashry, I.

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Bartelt, H.

Bendimerad, D. F.

Bremer, K.

A. Ahrens, A. Sandmann, K. Bremer, B. Roth, and S. Lochmann, “Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach,” Proc. SPIE 9634, 96345W (2015).
[Crossref]

Carpenter, J.

Charlet, G.

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Chen, X.

Cheng, X.

Cho, Y. T.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Crowley, A. M.

Demeritt, J. A.

Duparré, M.

Fade, J.

Fang, J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Flamm, D.

Frignac, Y.

Fu, S.

Genevaux, P.

Gray, S.

Grimm, S.

Grüner-Nielsen, L.

Guo, S.

Habel, W. R.

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

Hanzawa, N.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Hartung, A.

Hu, Q.

Huang, L.

Ip, E.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions—from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26(12), 59 (2015).

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

Jain, S.

Jakobsen, D.

Jespersen, K. G.

Jollivet, C.

Kasahara, M.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Kim, B. Y.

Kim, Y. H.

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Koshiba, M.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Krebber, K.

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

Leng, J.

Li, A.

Li, M.-J.

Lingle, R.

Liu, A.

Liu, D.

Lochmann, S.

A. Ahrens, A. Sandmann, K. Bremer, B. Roth, and S. Lochmann, “Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach,” Proc. SPIE 9634, 96345W (2015).
[Crossref]

Lorenz, A.

Lü, H.

Mafi, A.

Matsui, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

May-Smith, T. C.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Newson, T. P.

Nicholson, J. W.

Pálsdóttir, B.

Pan, Z.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions—from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26(12), 59 (2015).

Parnet, F.

Petropoulos, P.

Ramantanis, P.

Rancaño, V. J. F.

Richardson, D. J.

Roth, B.

A. Ahrens, A. Sandmann, K. Bremer, B. Roth, and S. Lochmann, “Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach,” Proc. SPIE 9634, 96345W (2015).
[Crossref]

Ruffin, A. B.

Sahu, J. K.

Saitoh, K.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Sakamoto, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Salsi, M.

Sandmann, A.

A. Ahrens, A. Sandmann, K. Bremer, B. Roth, and S. Lochmann, “Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach,” Proc. SPIE 9634, 96345W (2015).
[Crossref]

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Schröter, S.

Schulze, C.

Schülzgen, A.

Schuster, K.

Shieh, W.

Shum, P. P.

Song, K. Y.

Sun, Y.

Tang, M.

Thomsen, B. C.

Tong, W.

Tsujikawa, K.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Vuong, J.

Walton, D. T.

Wang, A.

Wang, J.

Wang, R.

Wang, T.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions—from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26(12), 59 (2015).

Wang, Y.

Wei, H.

Weng, Y.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions—from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26(12), 59 (2015).

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

Wilkinson, T. D.

Wu, H.

Xu, Y.

Yamamoto, F.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Zenteno, L. A.

Zhao, C.

Zhou, P.

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Appl. Opt. (1)

IEEE Photonics J. (1)

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (9)

C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few-mode optical fibers,” Opt. Express 21(3), 3170–3181 (2013).
[Crossref] [PubMed]

S. Jain, V. J. F. Rancaño, T. C. May-Smith, P. Petropoulos, J. K. Sahu, and D. J. Richardson, “Multi-element fiber technology for space-division multiplexing applications,” Opt. Express 22(4), 3787–3796 (2014).
[Crossref] [PubMed]

C. Jollivet, A. Mafi, D. Flamm, M. Duparré, K. Schuster, S. Grimm, and A. Schülzgen, “Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser,” Opt. Express 22(24), 30377–30386 (2014).
[Crossref] [PubMed]

A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
[Crossref] [PubMed]

J. Vuong, P. Ramantanis, Y. Frignac, M. Salsi, P. Genevaux, D. F. Bendimerad, and G. Charlet, “Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber,” Opt. Express 23(2), 1438–1455 (2015).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

L. Huang, J. Leng, P. Zhou, S. Guo, H. Lü, and X. Cheng, “Adaptive mode control of a few-mode fiber by real-time mode decomposition,” Opt. Express 23(21), 28082–28090 (2015).
[Crossref] [PubMed]

I. Ashry, A. Wang, and Y. Xu, “Mode-division-multiplexing of absorption-based fiber optical sensors,” Opt. Express 24(5), 5186–5202 (2016).
[Crossref]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Photonics News (1)

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26(12), 59 (2015).

Photonic Sensors (1)

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

Proc. SPIE (1)

A. Ahrens, A. Sandmann, K. Bremer, B. Roth, and S. Lochmann, “Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach,” Proc. SPIE 9634, 96345W (2015).
[Crossref]

Sensors (Basel) (2)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions—from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Other (1)

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Distributed temperature and strain sensing using spontaneous Brillouin scattering in optical few-mode fibers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper SM2O.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of MDM multi-functional sensors for various industrial applications.

Fig. 2
Fig. 2

Mode coupling distribution in the FMF: (a) under thermal perturbation; (b) for x-z plane strain; (c) for y-z plane strain.

Fig. 3
Fig. 3

Experimental configuration for simultaneous multi-functional sensing via multi-channel BOTDR using an FMF; CL1,2,3, collimating lens; M1,2, turning mirror; SLM1,2,3, spatial light modulator; PBS, polarizing beam splitter; BS, beam splitter.

Fig. 4
Fig. 4

Measured BGS of LP01 and LP11 modes in the FMF; MUX, multiplexer.

Fig. 5
Fig. 5

(a) Temperature distribution attained by converting two BFSs from LP01 and LP11 modes; (b) Strain distribution obtained by adapting two BFSs.

Fig. 6
Fig. 6

Sketch of various FMF refractive index profiles: (a) SI-FMF; (b) GI-FMF; (c) TI-FMF; (d) SI-FMF with trenches; (e) GI-FMF with trenches; (f) TI-FMF with trenches; (g) SI-FMF with rings; (h) GI-FMF with rings; (i) TI-FMF with rings.

Fig. 7
Fig. 7

Numerical analysis in SI-FMF for LP01 and LP11 modes: (a) BFS vs. Temperature; (b) BFS vs. Strain.

Fig. 8
Fig. 8

Numerical analysis in GI-FMF for LP01 and LP11 modes: (a) BFS vs. Temperature; (b) BFS vs. Strain.

Fig. 9
Fig. 9

Numerical analysis in TI-FMF for LP01 and LP11 modes: (a) BFS vs. Temperature; (b) BFS vs. Strain.

Fig. 10
Fig. 10

Schematic of the effective optical and longitudinal acoustic refractive indices: (a) for SM-FMF; (b) for GI-FMF; (c) for TI-FMF.

Tables (3)

Tables Icon

Table 1 Comparison of various mode profiles and doping design in SI-FMF

Tables Icon

Table 2 Overlap between the optical and acoustic modes under different temperature and strain

Tables Icon

Table 3 Differential BFS vs. various doping compositions in the FMF

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ν B =( 2 v A λ ) B f .
I u = ( E o E o * ρ u * rdrdθ ) 2 ( E o E o * ) 2 rdrdθ ρ ρ * rdrdθ .
B f = [ P x ( n Co 2 n Cl 2 )+ n Cl 2 ] 1 2 + [ P y ( n Co 2 n Cl 2 )+ n Cl 2 ] 1 2 .
P x = P 0 x + P I x + P II x .
P y = P 0 y + P I y + P II y .
P 0 x = β 0 x k 0 2 n Cl 2 k 0 2 ( n Co 2 n Cl 2 ) .
P I x =( 1 n Co 2 n Cl 2 ) | ψ x ( x,y ) | 2 | n Co 2 n Cl 2 |dxdy | ψ x ( x,y ) | 2 dxdy .
P II x =( 1 n Co 2 n Cl 2 ) | ψ x ( x,y ) | 2 [ 2 n Co Δ n x +Δ n x 2 ]dxdy | ψ x ( x,y ) | 2 dxdy .
P 0 y = β 0 y k 0 2 n Cl 2 k 0 2 ( n Co 2 n Cl 2 ) .
P I y =( 1 n Co 2 n Cl 2 ) | ψ y ( x,y ) | 2 | n Co 2 n Cl 2 |dxdy | ψ y ( x,y ) | 2 dxdy .
P II y =( 1 n Co 2 n Cl 2 ) | ψ y ( x,y ) | 2 [ 2 n Co Δ n y +Δ n y 2 ]dxdy | ψ y ( x,y ) | 2 dxdy .
Δ n x = C x σ x + C y σ y .
Δ n y = C x σ y + C y σ x .
σ x = E x ε x .
σ y = E y ε y .
ε x = rcos ϕ x 1d S x sin ϕ x 2 .
ε y = rcos ϕ y 1d S y sin ϕ y 2 .
ν B ( T,ε )= ν B0 + C T BFS ( T T 0 )+ C ε BFS ( ε ε 0 ).
ν B ( T,ε ) LP01 =10.91GHz+1.29MHz/ C o ( T T 0 )+57.6KHz/με( ε ε 0 ).
ν B ( T,ε ) LP11 =10.90GHz+1.25MHz/ C o ( T T 0 )+58.5KHz/με( ε ε 0 ).
d 2 f o d r 2 + 1 r d f o dr + k o 2 [ n o 2 ( r ) n o eff 2 ] f o =0.
d 2 f a d r 2 + 1 r d f a dr + k a 2 c [ n a 2 ( r ) n a eff 2 ] f a =0.
n o eff = β k o = λβ 2π .
n a eff = V Clad V eff .
n o = n o Clad [ 1+( 1× 10 3 +3× 10 6 ΔT+1.5× 10 7 Δε ) w Ge O 2 +( 2.1× 10 3 +5.4× 10 6 ΔT+3.2× 10 7 Δε ) w Ti O 2 +( 4.5× 10 3 +1.8× 10 6 ΔT+2.3× 10 7 Δε ) w B 2 O 3 +( 3.3× 10 3 +3.6× 10 6 ΔT+7.5× 10 7 Δε ) w F 2 ].
n a = n a Clad [ 1+( 7.2× 10 3 +4.7× 10 5 ΔT+2.1× 10 6 Δε ) w Ge O 2 +( 5.6× 10 3 +8.2× 10 5 ΔT+3.5× 10 6 Δε ) w Ti O 2 +( 4.5× 10 3 1.3× 10 5 ΔT7.6× 10 6 Δε ) w B 2 O 3 +( 2.7× 10 3 1.8× 10 5 ΔT3.8× 10 6 Δε ) w F 2 ].

Metrics