Abstract

We demonstrate a simple protocol for repeatable and efficient contact poling of guest-host electro-optic (EO) polymer thin films over large areas on soda-lime glass substrates. The poled large-area (up to 13.5 cm2) thin films in this study exhibit very large second-order nonlinear susceptibilities (d33 values of 330−520 pm/V) for second-harmonic generation (SHG) and associated large Pockels coefficients (r33 values of 105−180 pm/V) at the wavelength of 1.3 μm. The poling protocol also produced poled EO thin films with excellent optical homogeneity and large positive birefringence with small variation (~10−3) of refractive indices over the poled large areas. The study suggests a viable and scalable path towards the realization of integrated photonics based on pre-poled thin films of high performance EO polymers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators

Y. Jouane, Y-C. Chang, D. Zhang, J. Luo, A. K-Y. Jen, and Y. Enami
Opt. Express 22(22) 27725-27732 (2014)

Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators

Yasufumi Enami, Youssef Jouane, Jingdong Luo, and Alex K-Y. Jen
Opt. Express 22(24) 30191-30199 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. 80(10), 5531–5558 (1996).
    [Crossref]
  2. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [Crossref] [PubMed]
  3. S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
    [Crossref]
  4. S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
    [Crossref]
  5. X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
    [Crossref] [PubMed]
  6. Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
    [Crossref]
  7. R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15(1), 318–328 (1998).
    [Crossref]
  8. J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
    [Crossref]
  9. S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
    [Crossref]
  10. S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
    [Crossref]
  11. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
    [Crossref]
  12. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14(19), 8866–8884 (2006).
    [Crossref] [PubMed]
  13. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7(7), 1239–1250 (1990).
    [Crossref]
  14. X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
    [Crossref]
  15. D. H. Park and W. N. Herman, “Closed-form Maker fringe formulas for poled polymer thin films in multilayer structures,” Opt. Express 20(1), 173–185 (2012).
    [Crossref] [PubMed]
  16. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987).
    [Crossref]
  17. F. Kajzar, K. Horn, A. Nahata, and J. T. Yardley, “Nonlinear optical properties of an organic single crystal: relation between macroscopic and microscopic hyperpolarisabilities,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics 8(3–4), 205–217 (1994).
  18. C. C. Teng, M. A. Mortazavi, and G. K. Boudoughian, “Origin of the poling‐induced optical loss in a nonlinear optical polymeric waveguide,” Appl. Phys. Lett. 66(6), 667–669 (1995).
    [Crossref]
  19. J. C. Burfoot and G. W. Taylor, Polar Dielectrics and Their Applications (Macmillan, 1979).
  20. T. T. Wang and J. E. West, “Polarization of poly(vinylidene fluoride) by application of breakdown fields,” J. Appl. Phys. 53(10), 6552–6556 (1982).
    [Crossref]
  21. A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
    [Crossref]
  22. T. Manabe, K. Sato, and T. Ihara, “Measurement of complex refractive index of soda-lime glass at 60 GHz by vector-network-analyser-based scatterometer,” Electron. Lett. 28(14), 1354–1355 (1992).
    [Crossref]

2014 (1)

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

2013 (1)

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

2012 (3)

X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
[Crossref]

D. H. Park and W. N. Herman, “Closed-form Maker fringe formulas for poled polymer thin films in multilayer structures,” Opt. Express 20(1), 173–185 (2012).
[Crossref] [PubMed]

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

2011 (1)

2010 (4)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

2007 (1)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

2006 (1)

1998 (1)

1996 (1)

S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. 80(10), 5531–5558 (1996).
[Crossref]

1995 (1)

C. C. Teng, M. A. Mortazavi, and G. K. Boudoughian, “Origin of the poling‐induced optical loss in a nonlinear optical polymeric waveguide,” Appl. Phys. Lett. 66(6), 667–669 (1995).
[Crossref]

1994 (1)

F. Kajzar, K. Horn, A. Nahata, and J. T. Yardley, “Nonlinear optical properties of an organic single crystal: relation between macroscopic and microscopic hyperpolarisabilities,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics 8(3–4), 205–217 (1994).

1992 (1)

T. Manabe, K. Sato, and T. Ihara, “Measurement of complex refractive index of soda-lime glass at 60 GHz by vector-network-analyser-based scatterometer,” Electron. Lett. 28(14), 1354–1355 (1992).
[Crossref]

1990 (2)

1987 (1)

1982 (1)

T. T. Wang and J. E. West, “Polarization of poly(vinylidene fluoride) by application of breakdown fields,” J. Appl. Phys. 53(10), 6552–6556 (1982).
[Crossref]

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Bauer, S.

S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. 80(10), 5531–5558 (1996).
[Crossref]

Bjorklund, G. C.

Blum, R.

Boudoughian, G. K.

C. C. Teng, M. A. Mortazavi, and G. K. Boudoughian, “Origin of the poling‐induced optical loss in a nonlinear optical polymeric waveguide,” Appl. Phys. Lett. 66(6), 667–669 (1995).
[Crossref]

Chakravarty, S.

Chen, A.

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

Chen, R. T.

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Davies, J. A.

X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
[Crossref]

Decup, M.

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

DeRose, C. T.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Diaham, S.

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

Dinculescu, S.

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

Eich, M.

Enami, Y.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Greenlee, C.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Hau, S. K.

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Herman, W. N.

Horn, K.

F. Kajzar, K. Horn, A. Nahata, and J. T. Yardley, “Nonlinear optical properties of an organic single crystal: relation between macroscopic and microscopic hyperpolarisabilities,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics 8(3–4), 205–217 (1994).

Huang, S.

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
[Crossref]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Ihara, T.

T. Manabe, K. Sato, and T. Ihara, “Measurement of complex refractive index of soda-lime glass at 60 GHz by vector-network-analyser-based scatterometer,” Electron. Lett. 28(14), 1354–1355 (1992).
[Crossref]

Jen, A. K.-Y.

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
[Crossref]

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Jin, Z.

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

Jurich, M. C.

Kajzar, F.

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

F. Kajzar, K. Horn, A. Nahata, and J. T. Yardley, “Nonlinear optical properties of an organic single crystal: relation between macroscopic and microscopic hyperpolarisabilities,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics 8(3–4), 205–217 (1994).

Kim, T. D.

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Kuzyk, M. G.

Lebey, T.

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

Lee, C. H.

Li, M.

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

Lin, C. Y.

Locatelli, M. L.

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

Loychik, C.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Luo, J.

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
[Crossref]

X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Manabe, T.

T. Manabe, K. Sato, and T. Ihara, “Measurement of complex refractive index of soda-lime glass at 60 GHz by vector-network-analyser-based scatterometer,” Electron. Lett. 28(14), 1354–1355 (1992).
[Crossref]

Manea, A. M.

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

Mathine, D.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Miniewicz, A.

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

Mortazavi, M. A.

C. C. Teng, M. A. Mortazavi, and G. K. Boudoughian, “Origin of the poling‐induced optical loss in a nonlinear optical polymeric waveguide,” Appl. Phys. Lett. 66(6), 667–669 (1995).
[Crossref]

Nahata, A.

F. Kajzar, K. Horn, A. Nahata, and J. T. Yardley, “Nonlinear optical properties of an organic single crystal: relation between macroscopic and microscopic hyperpolarisabilities,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics 8(3–4), 205–217 (1994).

Norwood, R. A.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Page, R. H.

Park, D. H.

Peyghambarian, N.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Polishak, B. M.

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

Rau, I.

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

Reck, B.

Sablotny, J.

Sato, K.

T. Manabe, K. Sato, and T. Ihara, “Measurement of complex refractive index of soda-lime glass at 60 GHz by vector-network-analyser-based scatterometer,” Electron. Lett. 28(14), 1354–1355 (1992).
[Crossref]

Sen, A.

Shi, Z.

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Singer, K. D.

Sohn, J. E.

Sprave, M.

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Swalen, J. D.

Sznitko, L.

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

Tane, A.

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

Teng, C. C.

C. C. Teng, M. A. Mortazavi, and G. K. Boudoughian, “Origin of the poling‐induced optical loss in a nonlinear optical polymeric waveguide,” Appl. Phys. Lett. 66(6), 667–669 (1995).
[Crossref]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Tian, Y.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Twieg, R. J.

Wang, T. T.

T. T. Wang and J. E. West, “Polarization of poly(vinylidene fluoride) by application of breakdown fields,” J. Appl. Phys. 53(10), 6552–6556 (1982).
[Crossref]

Wang, X.

West, J. E.

T. T. Wang and J. E. West, “Polarization of poly(vinylidene fluoride) by application of breakdown fields,” J. Appl. Phys. 53(10), 6552–6556 (1982).
[Crossref]

Willson, C. G.

Yardley, J. T.

F. Kajzar, K. Horn, A. Nahata, and J. T. Yardley, “Nonlinear optical properties of an organic single crystal: relation between macroscopic and microscopic hyperpolarisabilities,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics 8(3–4), 205–217 (1994).

Yip, H. L.

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Zelmat, S.

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

Zhou, X. H.

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
[Crossref]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Appl. Phys. Lett. (4)

S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

S. Huang, J. Luo, Z. Jin, M. Li, T. D. Kim, A. Chen, and A. K.-Y. Jen, “Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals,” Appl. Phys. Lett. 105(18), 183305 (2014).
[Crossref]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

C. C. Teng, M. A. Mortazavi, and G. K. Boudoughian, “Origin of the poling‐induced optical loss in a nonlinear optical polymeric waveguide,” Appl. Phys. Lett. 66(6), 667–669 (1995).
[Crossref]

Chem. Mater. (1)

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X. H. Zhou, and A. K.-Y. Jen, “ Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications, ” Chem. Mater. 23(3), 544–553 (2010).
[Crossref]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Electron. Lett. (1)

T. Manabe, K. Sato, and T. Ihara, “Measurement of complex refractive index of soda-lime glass at 60 GHz by vector-network-analyser-based scatterometer,” Electron. Lett. 28(14), 1354–1355 (1992).
[Crossref]

IEEE Trans. Dielectr. Electr. Insul. (1)

S. Diaham, S. Zelmat, M. L. Locatelli, S. Dinculescu, M. Decup, and T. Lebey, “Dielectric breakdown of polyimide films: Area, thickness and temperature dependence,” IEEE Trans. Dielectr. Electr. Insul. 17(1), 18–27 (2010).
[Crossref]

J. Appl. Phys. (2)

S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. 80(10), 5531–5558 (1996).
[Crossref]

T. T. Wang and J. E. West, “Polarization of poly(vinylidene fluoride) by application of breakdown fields,” J. Appl. Phys. 53(10), 6552–6556 (1982).
[Crossref]

J. Mater. Chem. (2)

S. Huang, J. Luo, Z. Jin, X. H. Zhou, Z. Shi, and A. K.-Y. Jen, “Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process,” J. Mater. Chem. 22(38), 20353–20357 (2012).
[Crossref]

X. H. Zhou, J. Luo, J. A. Davies, S. Huang, and A. K.-Y. Jen, “Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups,” J. Mater. Chem. 22(32), 16390–16398 (2012).
[Crossref]

J. Opt. Soc. Am. B (3)

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics (1)

F. Kajzar, K. Horn, A. Nahata, and J. T. Yardley, “Nonlinear optical properties of an organic single crystal: relation between macroscopic and microscopic hyperpolarisabilities,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Optics 8(3–4), 205–217 (1994).

Nat. Photonics (1)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

A. M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko, and A. Miniewicz, “Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film,” Opt. Mater. 36(1), 69–74 (2013).
[Crossref]

Other (1)

J. C. Burfoot and G. W. Taylor, Polar Dielectrics and Their Applications (Macmillan, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Standard poling of a single layer EO polymer film sandwiched between two electrodes; (b) Large-area poling design of this study using a double-layer stack consisting of a micron-thick EO thin film and a millimetre-thick soda-lime glass substrate sandwiched between ITO electrode and gold electrode (marked in yellow).
Fig. 2
Fig. 2 Current density versus temperature plots for different poled samples of AJLZ53/P(S-co-MMA). The current profile of Corning’s soda-lime glass (1.0-mm thick) was provided for comparison.
Fig. 3
Fig. 3 (a) Breakdown craters observed within the poled single-layer film under optical microscope ( × 100), sample entry 4 in Table 1; (b) Image of high film quality under optical microscope ( × 100), and (c) Tapping mode AFM topograph of surface for the poled large area film on soda-lime glass (RMS = 0.85 nm), sample entry 6 in Table 1.
Fig. 4
Fig. 4 Current density versus temperature plots for poled samples of AJLZ53/APC in single and double layer structures. Film thickness of the EO polymer was at 1.70−1.80 μm. The current density profile of soda-lime glass (0.7-mm thick) is provided for comparison.

Tables (1)

Tables Icon

Table 1 Poling result summary of EO polymer AJLZ53/P(S-co-MMA).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n= n 0 + A 11990 2 v 2
Φ=  TM TE TM +2TE

Metrics