Abstract

We developed a highly sensitive side-polished plastic optical fiber coated with chemical synthesized graphene/polyaniline nanocomposite for ammonia gas sensing application. It was found that the optical sensor absorbance spectrum linearly increases with increasing ammonia concentrations. The experimental results revealed that the side-polished fiber sensor coated with graphene/polyaniline nanocomposite exhibited higher performance than the ones coated with only polyaniline. The proposed sensor demonstrated sensitivity, response and recovery times of 132.8 AU/%, 112 s, and 185 s, respectively, at room temperature. The superior sensing performance of the developed fiber sensor indicates its high efficiency for NH3 gas-sensing applications at room temperature.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers

S. A. Ibrahim, N. A. Rahman, M. H. Abu Bakar, S. H. Girei, M. H. Yaacob, H. Ahmad, and M. A. Mahdi
Opt. Express 23(3) 2837-2845 (2015)

Fabrication and calibration of Oxazine-based optic fiber sensor for detection of ammonia in water

Ahmed Hasnain Jalal, Jinsong Yu, and A. G. Agwu Nnanna
Appl. Opt. 51(17) 3768-3775 (2012)

Reduced graphene oxide for fiber-optic toluene gas sensing

Yi Xiao, Jianhui Yu, Long Shun, Shaozao Tan, Xiang Cai, Yunhan Luo, Jun Zhang, Huazhuo Dong, Huihui Lu, Heyuan Guan, Yongchun Zhong, Jieyuan Tang, and Zhe Chen
Opt. Express 24(25) 28290-28302 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Mishra, S. Bhardwaj, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas,” IEEE Sens. J. 15 (2), 1235–1239 (2015).
    [Crossref]
  2. De-Qun Wu and Li-Li Wu, Hai-Chun Cui, Hong-Nan Zhang, and Jian-Yong Yu, “A rapid ammonia sensor based on lysine nanogel-sensitized PANI/PAN nanofibers,” J. Mater. Chem. B 4, 1520–1527 (2016).
    [Crossref]
  3. K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
    [Crossref]
  4. A. Pathak, S. K. Mishra, and B. D. Gupta, “Fiber-optic ammonia sensor using Ag/SnO2 thin films: optimization of thickness of SnO2 film using electric field distribution and reaction factor,” Appl. Opt. 54 (29), 8712–8721 (2015).
    [Crossref] [PubMed]
  5. The Times of India, “Five dead, 100 injured in punjab ammonia gas tanker leak,” http://timesofindia.indiatimes.com/india/Five-dead-100-injured-in-Punjab-ammonia-gas-tanker-leak/articleshow/47651388.cms .
  6. C. S. Rout, M. Hegde, A. Govindaraj, and C. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology 18 (20), 205504 (2007).
    [Crossref]
  7. B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications–a review,” Sens. Actuator B-Chem. 107 (2), 666–677 (2005).
    [Crossref]
  8. G. Korotcenkov, V. Brinzari, and B. K. Cho, “Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review,” Microchim. Acta 183, 1033–1054 (2016).
    [Crossref]
  9. Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
    [Crossref]
  10. U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
    [Crossref]
  11. H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
    [Crossref]
  12. A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
    [Crossref]
  13. S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
    [Crossref]
  14. N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
    [Crossref]
  15. S. Dhibar and C. K. Das, “Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes,” J. Alloy. Compd. 653, 486–497 (2015).
    [Crossref]
  16. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
    [Crossref]
  17. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
    [Crossref]
  18. K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
    [Crossref]
  19. H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
    [Crossref]
  20. A. V. Murugan, T. Muraliganth, and A. Manthiram, “Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage,” Chem. Mat. 21, 5004–5006 (2009).
    [Crossref]
  21. C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication techniques applied to the development of novel optical fiber sensors based on nanostructured coatings,” IEEE Sens. J. 12, 2699–2710 (2012).
    [Crossref]
  22. D. R. Raj, S. Prasanth, T. Vineeshkumar, and C. Sudarsanakumar, “Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid,” Opt. Commun. 340, 86–92 (2015).
    [Crossref]
  23. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
    [Crossref]
  24. L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors 12, 12184–12207 (2012).
    [Crossref] [PubMed]
  25. N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
    [Crossref] [PubMed]
  26. S. Ibrahim, N. Rahman, M. A. Bakar, S. Girei, M. Yaacob, H. Ahmad, and M. Mahdi, “Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers,” Opt. Express 23, 2837–2845 (2015).
    [Crossref] [PubMed]
  27. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095 (2000).
    [Crossref]
  28. H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, “Flexible graphene–polyaniline composite paper for high-performance supercapacitor,” Energy Environ. Sci. 6, 1185–1191 (2013).
    [Crossref]
  29. P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
    [Crossref]
  30. J. Xiang and L. T. Drzal, “Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties,” Polymer 53, 4202–4210 (2012).
    [Crossref]
  31. M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
    [Crossref]
  32. M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
    [Crossref]
  33. M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, “Raman spectroscopy of polyaniline and oligoaniline thin films,” Electrochim. Acta 122, 28–38 (2014).
    [Crossref]
  34. L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
    [Crossref]
  35. L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
    [Crossref]
  36. G. M. do Nascimento and M. L. A. Temperini, “Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation,” J. Raman Spectrosc. 39, 772–778 (2008).
    [Crossref]
  37. R. Tucceri, P. M. Arnal, and A. N. Scian, “Spectroscopic characterization of poly (ortho-aminophenol) film electrodes: a review article,” J. Spectrosc. 2013, 951604 (2012).
  38. L. R. Shobin, D. Sastikumar, and S. Manivannan, “Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing,” Sens. Actuator A-Phys. 214, 74–80 (2014).
    [Crossref]
  39. K. Kalantar-zadeh and B. Fry, Nanotechnology-Enabled Sensors (Academic, 2007).
  40. S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
    [Crossref] [PubMed]
  41. A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).
  42. N. R. Chiou and A. J. Epstein, “Polyaniline nanofibers prepared by dilute polymerization,” Adv. Mater. 17, 1679–1683 (2005).
    [Crossref]
  43. M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
    [Crossref]
  44. S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
    [Crossref]
  45. F. N. Attia and K. E. Geckeler, “Polyaniline as a material for hydrogen storage applications,” Macromol. Rapid Commun. 34, 1043–1055 (2013).
    [Crossref] [PubMed]
  46. Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
    [Crossref]
  47. Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors 11, 4060–4072 (2011).
    [Crossref] [PubMed]

2016 (7)

De-Qun Wu and Li-Li Wu, Hai-Chun Cui, Hong-Nan Zhang, and Jian-Yong Yu, “A rapid ammonia sensor based on lysine nanogel-sensitized PANI/PAN nanofibers,” J. Mater. Chem. B 4, 1520–1527 (2016).
[Crossref]

G. Korotcenkov, V. Brinzari, and B. K. Cho, “Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review,” Microchim. Acta 183, 1033–1054 (2016).
[Crossref]

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
[Crossref]

Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
[Crossref]

2015 (7)

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

S. Ibrahim, N. Rahman, M. A. Bakar, S. Girei, M. Yaacob, H. Ahmad, and M. Mahdi, “Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers,” Opt. Express 23, 2837–2845 (2015).
[Crossref] [PubMed]

D. R. Raj, S. Prasanth, T. Vineeshkumar, and C. Sudarsanakumar, “Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid,” Opt. Commun. 340, 86–92 (2015).
[Crossref]

S. Dhibar and C. K. Das, “Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes,” J. Alloy. Compd. 653, 486–497 (2015).
[Crossref]

S. K. Mishra, S. Bhardwaj, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas,” IEEE Sens. J. 15 (2), 1235–1239 (2015).
[Crossref]

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

A. Pathak, S. K. Mishra, and B. D. Gupta, “Fiber-optic ammonia sensor using Ag/SnO2 thin films: optimization of thickness of SnO2 film using electric field distribution and reaction factor,” Appl. Opt. 54 (29), 8712–8721 (2015).
[Crossref] [PubMed]

2014 (3)

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, “Raman spectroscopy of polyaniline and oligoaniline thin films,” Electrochim. Acta 122, 28–38 (2014).
[Crossref]

L. R. Shobin, D. Sastikumar, and S. Manivannan, “Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing,” Sens. Actuator A-Phys. 214, 74–80 (2014).
[Crossref]

2013 (7)

H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, “Flexible graphene–polyaniline composite paper for high-performance supercapacitor,” Energy Environ. Sci. 6, 1185–1191 (2013).
[Crossref]

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

F. N. Attia and K. E. Geckeler, “Polyaniline as a material for hydrogen storage applications,” Macromol. Rapid Commun. 34, 1043–1055 (2013).
[Crossref] [PubMed]

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

2012 (6)

R. Tucceri, P. M. Arnal, and A. N. Scian, “Spectroscopic characterization of poly (ortho-aminophenol) film electrodes: a review article,” J. Spectrosc. 2013, 951604 (2012).

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

J. Xiang and L. T. Drzal, “Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties,” Polymer 53, 4202–4210 (2012).
[Crossref]

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication techniques applied to the development of novel optical fiber sensors based on nanostructured coatings,” IEEE Sens. J. 12, 2699–2710 (2012).
[Crossref]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors 12, 12184–12207 (2012).
[Crossref] [PubMed]

2011 (2)

K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
[Crossref]

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors 11, 4060–4072 (2011).
[Crossref] [PubMed]

2010 (1)

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

2009 (2)

A. V. Murugan, T. Muraliganth, and A. Manthiram, “Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage,” Chem. Mat. 21, 5004–5006 (2009).
[Crossref]

K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
[Crossref]

2008 (2)

G. M. do Nascimento and M. L. A. Temperini, “Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation,” J. Raman Spectrosc. 39, 772–778 (2008).
[Crossref]

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

2007 (2)

C. S. Rout, M. Hegde, A. Govindaraj, and C. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology 18 (20), 205504 (2007).
[Crossref]

H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
[Crossref]

2006 (1)

A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
[Crossref]

2005 (2)

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications–a review,” Sens. Actuator B-Chem. 107 (2), 666–677 (2005).
[Crossref]

N. R. Chiou and A. J. Epstein, “Polyaniline nanofibers prepared by dilute polymerization,” Adv. Mater. 17, 1679–1683 (2005).
[Crossref]

2000 (2)

M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
[Crossref]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095 (2000).
[Crossref]

1999 (1)

M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
[Crossref]

Agnihotra, S. R.

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

Ahmad, H.

Ahmad, M. Z.

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

Alberto, N.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors 12, 12184–12207 (2012).
[Crossref] [PubMed]

Al-Mashat, L.

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

Ameta, R.

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

Ameta, S. C.

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

Ammu, S.

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

Arnal, P. M.

R. Tucceri, P. M. Arnal, and A. N. Scian, “Spectroscopic characterization of poly (ortho-aminophenol) film electrodes: a review article,” J. Spectrosc. 2013, 951604 (2012).

Arregui, F. J.

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication techniques applied to the development of novel optical fiber sensors based on nanostructured coatings,” IEEE Sens. J. 12, 2699–2710 (2012).
[Crossref]

Aswal, D.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Attia, F. N.

F. N. Attia and K. E. Geckeler, “Polyaniline as a material for hydrogen storage applications,” Macromol. Rapid Commun. 34, 1043–1055 (2013).
[Crossref] [PubMed]

Babu, K. J.

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

Bai, H.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors 11, 4060–4072 (2011).
[Crossref] [PubMed]

K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
[Crossref]

Bai, S.

S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
[Crossref]

Bakar, M. A.

Bhardwaj, S.

S. K. Mishra, S. Bhardwaj, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas,” IEEE Sens. J. 15 (2), 1235–1239 (2015).
[Crossref]

Bhogale, A.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Bilro, L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors 12, 12184–12207 (2012).
[Crossref] [PubMed]

Bláha, M.

M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, “Raman spectroscopy of polyaniline and oligoaniline thin films,” Electrochim. Acta 122, 28–38 (2014).
[Crossref]

Boyer, M.

M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
[Crossref]

Brinzari, V.

G. Korotcenkov, V. Brinzari, and B. K. Cho, “Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review,” Microchim. Acta 183, 1033–1054 (2016).
[Crossref]

Buisson, J. P.

M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
[Crossref]

Cai, Y.

Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
[Crossref]

Campbell, J.

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

Chang, J.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Chang, Y. C.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors 11, 4060–4072 (2011).
[Crossref] [PubMed]

Chauhan, N. P. S.

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

Chen, A.

S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
[Crossref]

Chen, H. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Chen, J.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Chen, R.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Chen, X.

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
[Crossref]

Chiou, N. R.

N. R. Chiou and A. J. Epstein, “Polyaniline nanofibers prepared by dilute polymerization,” Adv. Mater. 17, 1679–1683 (2005).
[Crossref]

Cho, B. K.

G. Korotcenkov, V. Brinzari, and B. K. Cho, “Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review,” Microchim. Acta 183, 1033–1054 (2016).
[Crossref]

Chundawat, N. S.

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

Cochet, M.

M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
[Crossref]

M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
[Crossref]

Cong, H. P.

H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, “Flexible graphene–polyaniline composite paper for high-performance supercapacitor,” Energy Environ. Sci. 6, 1185–1191 (2013).
[Crossref]

Cui, S.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Das, C. K.

S. Dhibar and C. K. Das, “Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes,” J. Alloy. Compd. 653, 486–497 (2015).
[Crossref]

Debnath, A.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Dhawan, S.

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

Dhibar, S.

S. Dhibar and C. K. Das, “Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes,” J. Alloy. Compd. 653, 486–497 (2015).
[Crossref]

Ding, Y.

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

do Nascimento, G. M.

G. M. do Nascimento and M. L. A. Temperini, “Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation,” J. Raman Spectrosc. 39, 772–778 (2008).
[Crossref]

Drzal, L. T.

J. Xiang and L. T. Drzal, “Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties,” Polymer 53, 4202–4210 (2012).
[Crossref]

Dua, V.

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

Epstein, A. J.

N. R. Chiou and A. J. Epstein, “Polyaniline nanofibers prepared by dilute polymerization,” Adv. Mater. 17, 1679–1683 (2005).
[Crossref]

Farukh, M.

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095 (2000).
[Crossref]

Fry, B.

K. Kalantar-zadeh and B. Fry, Nanotechnology-Enabled Sensors (Academic, 2007).

Gajdardziska-Josifovska, M.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Gao, Z.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Geckeler, K. E.

F. N. Attia and K. E. Geckeler, “Polyaniline as a material for hydrogen storage applications,” Macromol. Rapid Commun. 34, 1043–1055 (2013).
[Crossref] [PubMed]

Girei, S.

Gou, X.

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

Govindaraj, A.

C. S. Rout, M. Hegde, A. Govindaraj, and C. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology 18 (20), 205504 (2007).
[Crossref]

Gupta, B. D.

S. K. Mishra, S. Bhardwaj, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas,” IEEE Sens. J. 15 (2), 1235–1239 (2015).
[Crossref]

A. Pathak, S. K. Mishra, and B. D. Gupta, “Fiber-optic ammonia sensor using Ag/SnO2 thin films: optimization of thickness of SnO2 film using electric field distribution and reaction factor,” Appl. Opt. 54 (29), 8712–8721 (2015).
[Crossref] [PubMed]

Gupta, S.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Han, S. H.

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

Hegde, M.

C. S. Rout, M. Hegde, A. Govindaraj, and C. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology 18 (20), 205504 (2007).
[Crossref]

Hirschmugl, C. J.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Holmes, M.

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Huang, Y.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Ibrahim, S.

Ippolito, S. J.

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

Jiang, Y.

H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
[Crossref]

Jiyong, S.

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Jyu, S. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Kalantar-zadeh, K.

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
[Crossref]

K. Kalantar-zadeh and B. Fry, Nanotechnology-Enabled Sensors (Academic, 2007).

Kaner, R. B.

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
[Crossref]

Karmakar, N.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Kojima, R. W.

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

Korotcenkov, G.

G. Korotcenkov, V. Brinzari, and B. K. Cho, “Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review,” Microchim. Acta 183, 1033–1054 (2016).
[Crossref]

Kothari, D.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Kulandaisamy, A. J.

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

Kuo, C. N.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors 11, 4060–4072 (2011).
[Crossref] [PubMed]

Kwon, K. H.

K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
[Crossref]

Lee, C. J.

K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
[Crossref]

Lee, M. J.

K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
[Crossref]

Lefrant, S.

M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
[Crossref]

M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
[Crossref]

Li, C.

K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
[Crossref]

Li, D.

S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
[Crossref]

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

Li, S. N.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors 11, 4060–4072 (2011).
[Crossref] [PubMed]

Li, Z.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Liao, Q.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Lin, S. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Lin, Y. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Liu, B.

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

Liu, H.

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

Liu, L.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Liu, Q.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Liu, W. F.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Louarn, G.

M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
[Crossref]

M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
[Crossref]

Lu, H.

Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
[Crossref]

Luo, R.

S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
[Crossref]

Mahdi, M.

Mani, G. K.

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

Manivannan, S.

L. R. Shobin, D. Sastikumar, and S. Manivannan, “Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing,” Sens. Actuator A-Phys. 214, 74–80 (2014).
[Crossref]

Manohar, S. K.

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

Manthiram, A.

A. V. Murugan, T. Muraliganth, and A. Manthiram, “Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage,” Chem. Mat. 21, 5004–5006 (2009).
[Crossref]

Mao, S.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Matias, I. R.

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication techniques applied to the development of novel optical fiber sensors based on nanostructured coatings,” IEEE Sens. J. 12, 2699–2710 (2012).
[Crossref]

Mattson, E. C.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Meghwal, K.

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

Min, N. K.

K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
[Crossref]

Mishra, S. K.

S. K. Mishra, S. Bhardwaj, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas,” IEEE Sens. J. 15 (2), 1235–1239 (2015).
[Crossref]

A. Pathak, S. K. Mishra, and B. D. Gupta, “Fiber-optic ammonia sensor using Ag/SnO2 thin films: optimization of thickness of SnO2 film using electric field distribution and reaction factor,” Appl. Opt. 54 (29), 8712–8721 (2015).
[Crossref] [PubMed]

Morávková, Z.

M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, “Raman spectroscopy of polyaniline and oligoaniline thin films,” Electrochim. Acta 122, 28–38 (2014).
[Crossref]

Mozafari, M.

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

Muraliganth, T.

A. V. Murugan, T. Muraliganth, and A. Manthiram, “Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage,” Chem. Mat. 21, 5004–5006 (2009).
[Crossref]

Murugan, A. V.

A. V. Murugan, T. Muraliganth, and A. Manthiram, “Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage,” Chem. Mat. 21, 5004–5006 (2009).
[Crossref]

Nie, Q.

Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
[Crossref]

Nogueira, R.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors 12, 12184–12207 (2012).
[Crossref] [PubMed]

Olthuis, W.

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications–a review,” Sens. Actuator B-Chem. 107 (2), 666–677 (2005).
[Crossref]

Ou, J. Z.

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

Pang, Z.

Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
[Crossref]

Patel, S.

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

Pathak, A.

Patil, U.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Phulgirkar, A.

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

Pinto, J. L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors 12, 12184–12207 (2012).
[Crossref] [PubMed]

Plessis, J. D.

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

Prasanth, S.

D. R. Raj, S. Prasanth, T. Vineeshkumar, and C. Sudarsanakumar, “Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid,” Opt. Commun. 340, 86–92 (2015).
[Crossref]

Qi, T.

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

Quan, W.

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

Quillard, S.

M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
[Crossref]

M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
[Crossref]

Rahman, N.

Raj, D. R.

D. R. Raj, S. Prasanth, T. Vineeshkumar, and C. Sudarsanakumar, “Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid,” Opt. Commun. 340, 86–92 (2015).
[Crossref]

Ramgir, N. S.

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Rao, C.

C. S. Rout, M. Hegde, A. Govindaraj, and C. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology 18 (20), 205504 (2007).
[Crossref]

Rayappan, J. B. B.

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

Reddy, J. R.

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

Ren, X. C.

H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, “Flexible graphene–polyaniline composite paper for high-performance supercapacitor,” Energy Environ. Sci. 6, 1185–1191 (2013).
[Crossref]

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095 (2000).
[Crossref]

Rout, C. S.

C. S. Rout, M. Hegde, A. Govindaraj, and C. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology 18 (20), 205504 (2007).
[Crossref]

Sadek, A.

A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
[Crossref]

Sadek, A. Z.

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

Sambyal, P.

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

Sastikumar, D.

L. R. Shobin, D. Sastikumar, and S. Manivannan, “Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing,” Sens. Actuator A-Phys. 214, 74–80 (2014).
[Crossref]

Scian, A. N.

R. Tucceri, P. M. Arnal, and A. N. Scian, “Spectroscopic characterization of poly (ortho-aminophenol) film electrodes: a review article,” J. Spectrosc. 2013, 951604 (2012).

Shankar, P.

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

Sheng, K.

K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
[Crossref]

Shi, G.

K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
[Crossref]

Shin, K.

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
[Crossref]

Shobin, L. R.

L. R. Shobin, D. Sastikumar, and S. Manivannan, “Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing,” Sens. Actuator A-Phys. 214, 74–80 (2014).
[Crossref]

Singh, A. P.

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

Singh, B. P.

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

Srinivasan, P.

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

Stejskal, J.

M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, “Raman spectroscopy of polyaniline and oligoaniline thin films,” Electrochim. Acta 122, 28–38 (2014).
[Crossref]

Sudarsanakumar, C.

D. R. Raj, S. Prasanth, T. Vineeshkumar, and C. Sudarsanakumar, “Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid,” Opt. Commun. 340, 86–92 (2015).
[Crossref]

Sun, Y.

K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
[Crossref]

Surwade, S. P.

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

Tahir, H. E.

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Tai, H.

H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
[Crossref]

Temperini, M. L. A.

G. M. do Nascimento and M. L. A. Temperini, “Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation,” J. Raman Spectrosc. 39, 772–778 (2008).
[Crossref]

Tien, C. L.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Timmer, B.

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications–a review,” Sens. Actuator B-Chem. 107 (2), 666–677 (2005).
[Crossref]

Trchová, M.

M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, “Raman spectroscopy of polyaniline and oligoaniline thin films,” Electrochim. Acta 122, 28–38 (2014).
[Crossref]

Tucceri, R.

R. Tucceri, P. M. Arnal, and A. N. Scian, “Spectroscopic characterization of poly (ortho-aminophenol) film electrodes: a review article,” J. Spectrosc. 2013, 951604 (2012).

Van Den Berg, A.

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications–a review,” Sens. Actuator B-Chem. 107 (2), 666–677 (2005).
[Crossref]

Verma, M.

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

Vineeshkumar, T.

D. R. Raj, S. Prasanth, T. Vineeshkumar, and C. Sudarsanakumar, “Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid,” Opt. Commun. 340, 86–92 (2015).
[Crossref]

Wang, B.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Wang, J.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Wang, P.

H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, “Flexible graphene–polyaniline composite paper for high-performance supercapacitor,” Energy Environ. Sci. 6, 1185–1191 (2013).
[Crossref]

Wang, Y.

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

Wei, Q.

Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
[Crossref]

Weinert, M.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Wen, Z.

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

Wlodarski, W.

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
[Crossref]

Wu, De-Qun

De-Qun Wu and Li-Li Wu, Hai-Chun Cui, Hong-Nan Zhang, and Jian-Yong Yu, “A rapid ammonia sensor based on lysine nanogel-sensitized PANI/PAN nanofibers,” J. Mater. Chem. B 4, 1520–1527 (2016).
[Crossref]

Wu, Li-Li

De-Qun Wu and Li-Li Wu, Hai-Chun Cui, Hong-Nan Zhang, and Jian-Yong Yu, “A rapid ammonia sensor based on lysine nanogel-sensitized PANI/PAN nanofibers,” J. Mater. Chem. B 4, 1520–1527 (2016).
[Crossref]

Wu, Z.

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

Xiang, J.

J. Xiang and L. T. Drzal, “Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties,” Polymer 53, 4202–4210 (2012).
[Crossref]

Xiaobo, Z.

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Xiaowei, H.

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Xie, G.

H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
[Crossref]

Xucheng, Z.

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Yaacob, M.

Yaacob, M. H.

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

Yang, J.

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

Yang, W.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Yao, Y.

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

Ye, J.

S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
[Crossref]

Yoo, K. P.

K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
[Crossref]

Yu, J.

H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
[Crossref]

Yu, S. H.

H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, “Flexible graphene–polyaniline composite paper for high-performance supercapacitor,” Energy Environ. Sci. 6, 1185–1191 (2013).
[Crossref]

Zamarreno, C. R.

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication techniques applied to the development of novel optical fiber sensors based on nanostructured coatings,” IEEE Sens. J. 12, 2699–2710 (2012).
[Crossref]

Zhang, M.

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

Zhao, M.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Zhihua, L.

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Zhong, N.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Zhou, Z.

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Zhu, S.

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

Zhu, X.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

N. R. Chiou and A. J. Epstein, “Polyaniline nanofibers prepared by dilute polymerization,” Adv. Mater. 17, 1679–1683 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

U. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, and D. Kothari, “Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films,” Appl. Surf. Sci. 339, 69–74 (2015).
[Crossref]

Beilstein J. Nanotechnol. (1)

Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, “Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature,” Beilstein J. Nanotechnol. 7, 1312–1321 (2016).
[Crossref]

Chem. Mat. (1)

A. V. Murugan, T. Muraliganth, and A. Manthiram, “Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage,” Chem. Mat. 21, 5004–5006 (2009).
[Crossref]

Electrochim. Acta (2)

M. Boyer, S. Quillard, M. Cochet, G. Louarn, and S. Lefrant, “RRS characterization of selected oligomers of polyaniline in situ spectroelectrochemical study,” Electrochim. Acta 44, 1981–1987 (1999).
[Crossref]

M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, “Raman spectroscopy of polyaniline and oligoaniline thin films,” Electrochim. Acta 122, 28–38 (2014).
[Crossref]

Energy Environ. Sci. (1)

H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, “Flexible graphene–polyaniline composite paper for high-performance supercapacitor,” Energy Environ. Sci. 6, 1185–1191 (2013).
[Crossref]

Energy Fuels (1)

Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, “A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material,” Energy Fuels 27, 568–575 (2012).
[Crossref]

IEEE Sens. J. (3)

S. K. Mishra, S. Bhardwaj, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas,” IEEE Sens. J. 15 (2), 1235–1239 (2015).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film,” IEEE Sens. J. 13, 777–782 (2013).
[Crossref]

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication techniques applied to the development of novel optical fiber sensors based on nanostructured coatings,” IEEE Sens. J. 12, 2699–2710 (2012).
[Crossref]

J. Alloy. Compd. (1)

S. Dhibar and C. K. Das, “Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes,” J. Alloy. Compd. 653, 486–497 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

S. Ammu, V. Dua, S. R. Agnihotra, S. P. Surwade, A. Phulgirkar, S. Patel, and S. K. Manohar, “Flexible, all-organic chemiresistor for detecting chemically aggressive vapors,” J. Am. Chem. Soc. 134, 4553–4556 (2012).
[Crossref] [PubMed]

J. Ind. Eng. Chem. (1)

N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, “High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities,” J. Ind. Eng. Chem. 36, 13–29 (2016).
[Crossref]

J. Mater. Chem. A (1)

S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, and J. Chen, “Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2,” J. Mater. Chem. A 1, 4462–4467 (2013).
[Crossref]

J. Mater. Chem. B (1)

De-Qun Wu and Li-Li Wu, Hai-Chun Cui, Hong-Nan Zhang, and Jian-Yong Yu, “A rapid ammonia sensor based on lysine nanogel-sensitized PANI/PAN nanofibers,” J. Mater. Chem. B 4, 1520–1527 (2016).
[Crossref]

J. Phys. Chem. C (1)

L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114, 16168–16173 (2010).
[Crossref]

J. Raman Spectrosc. (2)

G. M. do Nascimento and M. L. A. Temperini, “Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation,” J. Raman Spectrosc. 39, 772–778 (2008).
[Crossref]

M. Cochet, G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant, “Theoretical and experimental vibrational study of emeraldine in salt form. Part II,” J. Raman Spectrosc. 31, 1041–1049 (2000).
[Crossref]

J. Spectrosc. (1)

R. Tucceri, P. M. Arnal, and A. N. Scian, “Spectroscopic characterization of poly (ortho-aminophenol) film electrodes: a review article,” J. Spectrosc. 2013, 951604 (2012).

Macromol. Rapid Commun. (1)

F. N. Attia and K. E. Geckeler, “Polyaniline as a material for hydrogen storage applications,” Macromol. Rapid Commun. 34, 1043–1055 (2013).
[Crossref] [PubMed]

Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. (1)

H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, and Y. Ding, “Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 178, 293–298 (2013).
[Crossref]

Microchim. Acta (1)

G. Korotcenkov, V. Brinzari, and B. K. Cho, “Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review,” Microchim. Acta 183, 1033–1054 (2016).
[Crossref]

Nanotechnology (2)

C. S. Rout, M. Hegde, A. Govindaraj, and C. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology 18 (20), 205504 (2007).
[Crossref]

A. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, “A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite,” Nanotechnology 17, 4488 (2006).
[Crossref]

Opt. Commun. (1)

D. R. Raj, S. Prasanth, T. Vineeshkumar, and C. Sudarsanakumar, “Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid,” Opt. Commun. 340, 86–92 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095 (2000).
[Crossref]

Polymer (2)

J. Xiang and L. T. Drzal, “Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties,” Polymer 53, 4202–4210 (2012).
[Crossref]

K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, “Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices,” Polymer 52, 5567–5572 (2011).
[Crossref]

RSC Adv. (2)

P. Sambyal, A. P. Singh, M. Verma, M. Farukh, B. P. Singh, and S. Dhawan, “Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption,” RSC Adv. 4, 12614–12624 (2014).
[Crossref]

S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature,” RSC Adv. 6, 6939–6945 (2016).
[Crossref]

Sci. Rep. (1)

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Sens. Actuator A-Phys. (1)

L. R. Shobin, D. Sastikumar, and S. Manivannan, “Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing,” Sens. Actuator A-Phys. 214, 74–80 (2014).
[Crossref]

Sens. Actuator B-Chem. (7)

A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar, and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping,” Sens. Actuator B-Chem. 688, 422–429 (2016).

M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sens. Actuator B-Chem. 177, 981–988 (2013).
[Crossref]

L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, and M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites,” Sens. Actuator B-Chem. 226, 553–562 (2016).
[Crossref]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sens. Actuator B-Chem. 178, 485–493 (2013).
[Crossref]

H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, “Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film,” Sens. Actuator B-Chem. 125, 644–650 (2007).
[Crossref]

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications–a review,” Sens. Actuator B-Chem. 107 (2), 666–677 (2005).
[Crossref]

K. P. Yoo, K. H. Kwon, N. K. Min, M. J. Lee, and C. J. Lee, “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films,” Sens. Actuator B-Chem. 143 (1), 333–340 (2009).
[Crossref]

Sensors (2)

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors 12, 12184–12207 (2012).
[Crossref] [PubMed]

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors 11, 4060–4072 (2011).
[Crossref] [PubMed]

Thin Solid Films (1)

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Other (2)

The Times of India, “Five dead, 100 injured in punjab ammonia gas tanker leak,” http://timesofindia.indiatimes.com/india/Five-dead-100-injured-in-Punjab-ammonia-gas-tanker-leak/articleshow/47651388.cms .

K. Kalantar-zadeh and B. Fry, Nanotechnology-Enabled Sensors (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the side-polished optical fiber.
Fig. 2
Fig. 2 Microscopic images of POF (a) before and (b) after polishing process. (c) SEM image for the SP-POF.
Fig. 3
Fig. 3 Schematic illustration for Preparation of graphene/PANI nanocomposite.
Fig. 4
Fig. 4 Experimental setup for NH3 sensing.
Fig. 5
Fig. 5 FESEM images of (a) Graphene, (b), PANI, (c and d) GPC nanocomposite of different magnification and (e) 3D topography AFM image for the GPC nanocomposite.
Fig. 6
Fig. 6 Raman spectra of (a) GPC nanocomposite and (b) PANI.
Fig. 7
Fig. 7 Dynamic responses of the (a) PANI and (b) GPC thin films toward different concentrations of NH3 at room temperature.
Fig. 8
Fig. 8 Absorbance response versus optical wavelength for PANI based SP-POF exposed to NH3 with 1% concentration in synthetic air at room temperature.
Fig. 9
Fig. 9 (a) Sensitivity and (b) absorbance response change as function of NH3 concentration of PANI and GPC sensing layers-coated SP-POF ammonia gas sensors.
Fig. 10
Fig. 10 Schematic representation of the proposed interaction mechanism between NH3 gas molecules and GPC sensing layer.
Fig. 11
Fig. 11 (a) Dynamic and (b) absorbance response of SP-POF coated GPC nanocomposite toward NH3 and H2.
Fig. 12
Fig. 12 The sensitivity for SP-POF ammonia gas sensor with three polished lengths (0.5 cm,1 cm and 2 cm) coated with GPC nanocomposite.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A λ = log ( S λ D λ R λ D λ ) .
S e n s i t i v i t y ( S ) = ( A gas A 0 Δ C ) .
P A N I H + + N H 3 P A N I + N H 4   +

Metrics