Abstract

We report on the ultraviolet to near-infrared supercontinuum generation in a 3-mm-long yttrium orthosilicate channel waveguide implanted by oxygen. The generated broadest spectrum spans 575 nm (at −30 dB points) from 430 to 1005 nm when pumping the waveguide at 800 nm and spans 115 nm (at −30 dB points) from 345 to 460 nm when pumping the waveguide at 400 nm, respectively. The nonlinear refractive index of the ion implanted region is quantified by fitting our spectra to nonlinear pulse propagation simulations around 800 nm. Our analysis shows that the nonlinear refractive index of yttrium orthosilicate waveguide after ion implantation and thermal treatment is about half the value of the bulk crystal. Our research findings indicate that ion implantation is a promising method to fabricate channel waveguides for low-threshold supercontinuum generation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical channel waveguide in Nd/Ce codoped YAG laser crystal produced by carbon ion implantation

Yan-Xia Kong, Feng Chen, Daniel Jaque, Qing-Ming Lu, and Hong-Ji Ma
Appl. Opt. 48(23) 4514-4518 (2009)

Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide

M. R. Karim, B. M. A. Rahman, and Govind P. Agrawal
Opt. Express 23(5) 6903-6914 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  3. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  4. P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, and S. C. Ruan, “Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output,” J. Lightwave Technol. 31(23), 3658–3662 (2013).
    [Crossref]
  5. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
    [Crossref] [PubMed]
  6. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref] [PubMed]
  7. H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Compact light source for ultrabroadband coherent anti-Stoke Raman scattering (CARS) microscopy,” Opt. Express 23(3), 2872–2878 (2015).
    [Crossref] [PubMed]
  8. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  9. C. C. Evans, K. Shtyrkova, J. D. B. Bradley, O. Reshef, E. Ippen, and E. Mazur, “Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths,” Opt. Express 21(15), 18582–18591 (2013).
    [Crossref] [PubMed]
  10. F. Leo, S. P. Gorza, S. Coen, B. Kuyken, and G. Roelkens, “Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range,” Opt. Lett. 40(1), 123–126 (2015).
    [Crossref] [PubMed]
  11. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  12. U. D. Dave, C. Ciret, S. P. Gorza, S. Combrie, A. De Rossi, F. Raineri, G. Roelkens, and B. Kuyken, “Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate,” Opt. Lett. 40(15), 3584–3587 (2015).
    [Crossref] [PubMed]
  13. D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
    [Crossref] [PubMed]
  14. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
    [Crossref] [PubMed]
  15. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
    [Crossref] [PubMed]
  16. H. Guo, B. Zhou, M. Steinert, F. Setzpfandt, T. Pertsch, H. P. Chung, Y. H. Chen, and M. Bache, “Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching,” Opt. Lett. 40(4), 629–632 (2015).
    [Crossref] [PubMed]
  17. B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
    [Crossref]
  18. P. D. Townsend, L. Zhang, and P. J. Chandler, Optical Effects of Ion Implantation, (Cambridge University, 1994).
  19. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [Crossref]
  20. H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
    [Crossref]
  21. B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
    [Crossref] [PubMed]
  22. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  23. M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D. I. Yeom, C. Krankel, and F. Rotermund, “Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation,” Opt. Mater. Express 6(8), 2468–2474 (2016).
    [Crossref]
  24. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  25. G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9(11), 510–512 (1984).
    [Crossref] [PubMed]
  26. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986).
    [Crossref] [PubMed]
  27. M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126(4–6), 308–317 (1996).
    [Crossref]
  28. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
    [Crossref]
  29. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
    [Crossref] [PubMed]
  30. P. J. M. Johnson, V. I. Prokhorenko, and R. J. D. Miller, “Stable UV to IR supercontinuum generation in calcium fluoride with conserved circular polarization states,” Opt. Express 17(24), 21488–21496 (2009).
    [Crossref] [PubMed]
  31. I. Zeylikovich, V. Kartazaev, and R. R. Alfano, “Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,” J. Opt. Soc. Am. B 22(7), 1453–1460 (2005).
    [Crossref]
  32. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  33. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express 14(25), 12145–12150 (2006).
    [Crossref] [PubMed]
  34. C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41(18), 3735–3742 (2002).
    [Crossref] [PubMed]

2017 (2)

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

2016 (3)

2015 (5)

2014 (1)

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (4)

2012 (2)

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
[Crossref] [PubMed]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2009 (2)

2007 (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

2006 (2)

2005 (2)

I. Zeylikovich, V. Kartazaev, and R. R. Alfano, “Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,” J. Opt. Soc. Am. B 22(7), 1453–1460 (2005).
[Crossref]

H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
[Crossref]

2003 (1)

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (1)

1998 (1)

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

1996 (1)

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126(4–6), 308–317 (1996).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986).
[Crossref] [PubMed]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1984 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ahn, K. J.

Alfano, R. R.

Alti, K.

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Bache, M.

Baek, I. H.

Bang, O.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bookey, H. T.

Boppart, S. A.

Bradley, J. D. B.

Brodeur, A.

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

Calmano, T.

Chalapathi, K.

Chen, F.

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Chen, K. K.

Chen, Y. H.

Chin, S. L.

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

Choi, D. Y.

Choi, S. Y.

Chung, H. P.

Ciret, C.

Coen, S.

Combrie, S.

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986).
[Crossref] [PubMed]

Dave, U. D.

De Rossi, A.

Debbarma, S.

Dharmadhikari, A. K.

Dharmadhikari, J. A.

Diddams, S. A.

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

Drexler, W.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Evans, C. C.

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Fredrick, C.

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

Fujimoto, J. G.

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Gai, X.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gorza, S. P.

Guo, H.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Han, H.

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Han, H. P.

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

He, M. Y.

H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
[Crossref]

He, X. M.

H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
[Crossref]

Huang, S. S.

Ippen, E.

Ippen, E. P.

Jayakrishnan, C.

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Johnson, P. J. M.

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Jose, G.

Kar, A. K.

Kartazaev, V.

Kärtner, F. X.

Katona, G.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[Crossref] [PubMed]

Kawano, H.

Kim, M. H.

Kolesik, M.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[Crossref] [PubMed]

Krankel, C.

Kubat, I.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kuyken, B.

Lee, B. J.

Leo, F.

Li, X. D.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Luo, J.

Luther-Davies, B.

Ma, P.

Ma, Y. J.

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

Madden, S.

Mathur, D.

Mazur, E.

McCarthy, J. E.

Midorikawa, K.

Mikami, H.

Miller, R. J. D.

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moloney, J. V.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[Crossref] [PubMed]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Morgner, U.

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Nagura, C.

Nandi, P.

Obara, M.

Ouyang, D. Q.

Pang, H. Y.

H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
[Crossref]

Penzkofer, A.

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126(4–6), 308–317 (1996).
[Crossref]

Pertsch, T.

Petersen, C. R.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Pitris, C.

Prokhorenko, V. I.

Psaila, N. D.

Raineri, F.

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Ren, X.

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Reshef, O.

Roelkens, G.

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986).
[Crossref] [PubMed]

Rotermund, F.

Ruan, S.

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Ruan, S. C.

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, and S. C. Ruan, “Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output,” J. Lightwave Technol. 31(23), 3658–3662 (2013).
[Crossref]

Russell, P. S.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Setzpfandt, F.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, Y. R.

Shiozawa, M.

Shirai, M.

Shtyrkova, K.

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986).
[Crossref] [PubMed]

Steinert, M.

Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Suda, A.

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tang, Z. Q.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Thomson, R. R.

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Tu, H.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref] [PubMed]

Vahala, K. J.

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

Vu, K.

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Wang, L.

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Wang, M.

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Wang, R.

Wang, X. L.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Watanabe, K.

Wei, H. F.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wittmann, M.

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126(4–6), 308–317 (1996).
[Crossref]

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Wright, E. M.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[Crossref] [PubMed]

Xiang, B.

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Xiang, B. X.

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

Xu, J.

H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
[Crossref]

Yan, P.

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Yan, P. G.

Yang, G.

Yang, K. Y.

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

Yang, Z.

Ycas, G.

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

Yeom, D. I.

Yin, J.

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Yoon Oh, D.

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

Yu, L.

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

Yu, Y.

Zeylikovich, I.

Zhang, G. L.

Zhao, G. J.

H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
[Crossref]

Zhao, J. Q.

Zhou, B.

Zhou, B. B.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Chin. Phys. Lett. (1)

B. X. Xiang, L. Wang, Y. J. Ma, L. Yu, H. P. Han, and S. C. Ruan, “Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching,” Chin. Phys. Lett. 34(2), 024203 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref] [PubMed]

Mater. Lett. (1)

H. Y. Pang, G. J. Zhao, M. Y. He, J. Xu, and X. M. He, “Study on the growth, etch morphology and spectra of Y2SiO5 crystal,” Mater. Lett. 59(28), 3539–3542 (2005).
[Crossref]

Nat. Commun. (1)

D. Yoon Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref] [PubMed]

Nat. Photonics (4)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Opt. Commun. (1)

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126(4–6), 308–317 (1996).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Lett. (3)

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[Crossref] [PubMed]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

B. Xiang, X. Ren, S. Ruan, L. Wang, P. Yan, H. Han, M. Wang, and J. Yin, “Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide,” Sci. Rep. 6(1), 31612 (2016).
[Crossref] [PubMed]

Other (1)

P. D. Townsend, L. Zhang, and P. J. Chandler, Optical Effects of Ion Implantation, (Cambridge University, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the channel waveguides fabrication process in YSO crystal.
Fig. 2
Fig. 2 Experimental setup of SC generation in YSO channel waveguides. P1: half-wave plate; P2: polarizer; NDF: neutral density filter; Obj1: objective; Waveguide: YSO channel waveguides; Obj2: objective; OSA: optical spectrum analyzer. The inset shows a microscope photograph (1000 × ) of the cross-section of a channel waveguide.
Fig. 3
Fig. 3 Refractive index profiles of (a) na and (b) nb at the wavelength of 800 nm, the simulated (c) (d) and measured (e) (f) intensity distributions of TE00 and TM00 modes in a YSO channel waveguide.
Fig. 4
Fig. 4 Evolution of the spectra of TE and TM modes as a function of the peak powers coupled into the waveguide.
Fig. 5
Fig. 5 Dispersion curves of TE00 and TM00 modes in a YSO channel waveguide.
Fig. 6
Fig. 6 Ultraviolet spectral broadening for a YSO channel waveguide with the second harmonic pump source.
Fig. 7
Fig. 7 Interferometric signals and envelopes of TE and TM modes from 800 nm laser pulses after passing through a YSO channel waveguide with peak power of 750 kW.
Fig. 8
Fig. 8 (a) Experimental closed-aperture z-scan result and fitted curve of the YSO crystal at 800 nm, (b) Measured (black lines) and simulated (red lines) spectral broadening for a YSO channel waveguide at λ = 800 nm at incident peak powers from 10 kW to 500 kW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N λ (x,y)=( N sub,λ / N sub,632.8nm )× N 632.8nm (x,y)
A z = α 2 A+ n2 i n+1 n! β n n At t n +iγ | A | 2 A γ ω 0 t ( | A | 2 A )

Metrics