Abstract

We report on the synthesis of Ni nanoparticles via thin film thermal annealing. The as prepared particles exhibit a tunable average diameter ranging from 13 nm to 44 nm depending on the initial deposited film thickness and are covered with a stable NiOx shell. This technique is suitable for large scale fabrication of Ni nanoparticles onto substrates. The study of the magnetic and optical properties of these nanostructures revealed a ferromagnetic behaviour at room temperature and a localized surface plasmon resonance in the UV-range, promoting Ni nanoparticles as a suitable material for UV-plasmonic applications. The coupling between plasmon and interband transitions have also been studied.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
    [Crossref]
  2. S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science 320, 190–194 (2008).
    [Crossref] [PubMed]
  3. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D 36, 167–181 (2003).
    [Crossref]
  4. B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
    [Crossref]
  5. J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).
  6. J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
    [Crossref] [PubMed]
  7. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
    [Crossref] [PubMed]
  8. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
    [Crossref] [PubMed]
  9. J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
    [Crossref]
  10. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
    [Crossref] [PubMed]
  11. V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
    [Crossref]
  12. T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115, 21826–21831 (2011).
    [Crossref]
  13. A. C. Johnston-peck, J. Wang, and J. B. Tracy, “Synthesis and Structural and Magnetic characterization of Ni(core)/NiO(shell) nanoparticles,” ACS Nano. 5, 1077–1084 (2009).
    [Crossref]
  14. S. H. Wu and D. H. Chen, “Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol,” J. Coll. Int. Sci. 259, 282–286 (2003).
    [Crossref]
  15. Y. He, X. Li, and M. T. Swihart, “Laser-driven aerosol synthesis of nickel nano-particles,” Chem. Mat. 17, 1017–1026 (2005).
    [Crossref]
  16. K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
    [Crossref]
  17. A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
    [Crossref]
  18. S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
    [Crossref]
  19. J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
    [Crossref]
  20. D. Li and S. Komarneni, “Microwave-assisted polyol process for synthesis of Ni nanoparticles,” J. Am. Cer. Soc. 89, 1510–1517 (2006).
    [Crossref]
  21. Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
    [Crossref]
  22. F.J. Garicia de Abajo, http://nanophotonics.csic.es/static/widgets/ .
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 64370–4379 (1972).
    [Crossref]
  24. W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
    [Crossref]
  25. S. Sako, O. Kazunari, S. Masahiro, and B. Shunji, “Magnetic property of NiO ultrafine particles with a small Ni core,” J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 15, 1338–1342 (1997).
    [Crossref]
  26. W. J. Moore, “Seven Solid States,” in An Introduction to the Chemistry and Physics of Solids (W. A. Benjamin, 1970).
  27. W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy,” Phys. Rev. Lett. 105, 904–913 (1957).
  28. T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
    [Crossref]

2014 (1)

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
[Crossref]

2013 (2)

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

2012 (1)

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

2011 (5)

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115, 21826–21831 (2011).
[Crossref]

2010 (2)

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
[Crossref]

2009 (2)

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

A. C. Johnston-peck, J. Wang, and J. B. Tracy, “Synthesis and Structural and Magnetic characterization of Ni(core)/NiO(shell) nanoparticles,” ACS Nano. 5, 1077–1084 (2009).
[Crossref]

2008 (2)

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

2007 (2)

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

2006 (2)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

D. Li and S. Komarneni, “Microwave-assisted polyol process for synthesis of Ni nanoparticles,” J. Am. Cer. Soc. 89, 1510–1517 (2006).
[Crossref]

2005 (2)

Y. He, X. Li, and M. T. Swihart, “Laser-driven aerosol synthesis of nickel nano-particles,” Chem. Mat. 17, 1017–1026 (2005).
[Crossref]

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
[Crossref]

2003 (2)

S. H. Wu and D. H. Chen, “Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol,” J. Coll. Int. Sci. 259, 282–286 (2003).
[Crossref]

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D 36, 167–181 (2003).
[Crossref]

1997 (1)

S. Sako, O. Kazunari, S. Masahiro, and B. Shunji, “Magnetic property of NiO ultrafine particles with a small Ni core,” J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 15, 1338–1342 (1997).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 64370–4379 (1972).
[Crossref]

1957 (1)

W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy,” Phys. Rev. Lett. 105, 904–913 (1957).

Abd-Lefdil, M.

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

Adam, P. M.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

Aizpurua, J.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Aktsipetrov, O. A.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Alaverdyan, Y.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Albella, P.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Alonso-González, P.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Ambjörnsson, T.

W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
[Crossref]

Amelles, G.

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

Ameloot, M.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

André, G.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

Apell, S. P.

W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
[Crossref]

Armelies, G.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Armelles, G.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Banthí, J. C.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

Béal, J.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

Bean, C. P.

W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy,” Phys. Rev. Lett. 105, 904–913 (1957).

Bijeon, J. L.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

Biris, C. G.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Bonanni, V.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Bonetti, S.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Bousmina, M.

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Cebollada, A.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Chaboussant, G.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

Chen, D. H.

S. H. Wu and D. H. Chen, “Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol,” J. Coll. Int. Sci. 259, 282–286 (2003).
[Crossref]

Chen, H.

W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
[Crossref]

Chen, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 64370–4379 (1972).
[Crossref]

Clercq, B. De

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Connolly, J.

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D 36, 167–181 (2003).
[Crossref]

Diaz, R.

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

Dmitriev, A.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
[Crossref]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Dobson, J.

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D 36, 167–181 (2003).
[Crossref]

García, F.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

García-Martín, A.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

García-Martín, J. M.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Gatel, C.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

Gérard, D.

Gillijns, W.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

González, M. U.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

González-Díaz, J. B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

Gösele, U.

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Harsha, S. S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
[Crossref]

Hayashi, M.

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

He, Y.

Y. He, X. Li, and M. T. Swihart, “Laser-driven aerosol synthesis of nickel nano-particles,” Chem. Mat. 17, 1017–1026 (2005).
[Crossref]

Hillenbrand, R.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Huth, F.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Jeyaram, Y.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 64370–4379 (1972).
[Crossref]

Johnston-peck, A. C.

A. C. Johnston-peck, J. Wang, and J. B. Tracy, “Synthesis and Structural and Magnetic characterization of Ni(core)/NiO(shell) nanoparticles,” ACS Nano. 5, 1077–1084 (2009).
[Crossref]

Jones, S. K.

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D 36, 167–181 (2003).
[Crossref]

Käll, M.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Kazunari, O.

S. Sako, O. Kazunari, S. Masahiro, and B. Shunji, “Magnetic property of NiO ultrafine particles with a small Ni core,” J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 15, 1338–1342 (1997).
[Crossref]

kerman, J. Å

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Kityk, I. V.

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

Komarneni, S.

D. Li and S. Komarneni, “Microwave-assisted polyol process for synthesis of Ni nanoparticles,” J. Am. Cer. Soc. 89, 1510–1517 (2006).
[Crossref]

Langhammer, C.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
[Crossref]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Lechuga, L. M.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Li, D.

D. Li and S. Komarneni, “Microwave-assisted polyol process for synthesis of Ni nanoparticles,” J. Am. Cer. Soc. 89, 1510–1517 (2006).
[Crossref]

Li, X.

Y. He, X. Li, and M. T. Swihart, “Laser-driven aerosol synthesis of nickel nano-particles,” Chem. Mat. 17, 1017–1026 (2005).
[Crossref]

Martin, J.

Masahiro, S.

S. Sako, O. Kazunari, S. Masahiro, and B. Shunji, “Magnetic property of NiO ultrafine particles with a small Ni core,” J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 15, 1338–1342 (1997).
[Crossref]

Maurer, T.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

Meiklejohn, W. H.

W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy,” Phys. Rev. Lett. 105, 904–913 (1957).

Meneses-Rodríguez, D.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

Miljkovic, V.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
[Crossref]

Moore, W. J.

W. J. Moore, “Seven Solid States,” in An Introduction to the Chemistry and Physics of Solids (W. A. Benjamin, 1970).

Moshchalkov, V. V.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Navas, D.

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

Ni, W.

W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
[Crossref]

Nielsch, K.

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

Nogués, J.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Nouneh, K.

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

Ott, F.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

Oyama, M.

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

Paddubrouskaya, H.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Pakizeh, T.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
[Crossref]

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115, 21826–21831 (2011).
[Crossref]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Pankhurst, Q. A.

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D 36, 167–181 (2003).
[Crossref]

Panoiu, N. C.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Parkin, S. S. P.

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

Piquemal, J. Y.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

Pirzadeh, Z.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
[Crossref]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Plain, J.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

Plaud, A.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

Porel, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
[Crossref]

Proust, J.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

Radhakrishnan, T. P.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
[Crossref]

Rao, D. N.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
[Crossref]

Royer, P.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

Sako, S.

S. Sako, O. Kazunari, S. Masahiro, and B. Shunji, “Magnetic property of NiO ultrafine particles with a small Ni core,” J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 15, 1338–1342 (1997).
[Crossref]

Sarrazin, A.

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

Sepúlveda, B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Shunji, B.

S. Sako, O. Kazunari, S. Masahiro, and B. Shunji, “Magnetic property of NiO ultrafine particles with a small Ni core,” J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 15, 1338–1342 (1997).
[Crossref]

Silhanek, A. V.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Singh, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
[Crossref]

Soumare, Y.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

Swihart, M. T.

Y. He, X. Li, and M. T. Swihart, “Laser-driven aerosol synthesis of nickel nano-particles,” Chem. Mat. 17, 1017–1026 (2005).
[Crossref]

Thomas, L.

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

Tracy, J. B.

A. C. Johnston-peck, J. Wang, and J. B. Tracy, “Synthesis and Structural and Magnetic characterization of Ni(core)/NiO(shell) nanoparticles,” ACS Nano. 5, 1077–1084 (2009).
[Crossref]

Valev, V. K.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Vavassori, P.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Vázquez, M.

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

Verbiest, T.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Viau, G.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

Volodin, A.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Wang, J.

W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
[Crossref]

A. C. Johnston-peck, J. Wang, and J. B. Tracy, “Synthesis and Structural and Magnetic characterization of Ni(core)/NiO(shell) nanoparticles,” ACS Nano. 5, 1077–1084 (2009).
[Crossref]

Wehrspohn, R. B.

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

Wu, S. H.

S. H. Wu and D. H. Chen, “Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol,” J. Coll. Int. Sci. 259, 282–286 (2003).
[Crossref]

Zighem, F.

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

ACS Nano (1)

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[Crossref]

ACS Nano. (1)

A. C. Johnston-peck, J. Wang, and J. B. Tracy, “Synthesis and Structural and Magnetic characterization of Ni(core)/NiO(shell) nanoparticles,” ACS Nano. 5, 1077–1084 (2009).
[Crossref]

ACS Phot. (1)

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon Interband Coupling in Nickel Nanoantennas,” ACS Phot. 1158–162 (2014).
[Crossref]

Adv. Mat. (2)

J. B. González-Díaz, A. García-Martín, G. Amelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mat. 19, 2643–2647 (2007).
[Crossref]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO 2 magnetoplasmonic nanodisks,” Adv. Mat. 24, 36–41 (2012).

Appl. Phys. Lett. (1)

T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, and G. Viau, “Magnetic nano wires as permanent magnet materials,” Appl. Phys. Lett. 91(17), 1–5 (2007).
[Crossref]

Chem. Mat. (2)

Y. He, X. Li, and M. T. Swihart, “Laser-driven aerosol synthesis of nickel nano-particles,” Chem. Mat. 17, 1017–1026 (2005).
[Crossref]

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer : In situ synthesis, free-standing films with highly monodis-perse silver nanoparticles and optical limiting,” Chem. Mat. 17, 9–12 (2005).
[Crossref]

J. All. Comp. (1)

K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I. V. Kityk, and M. Bousmina, “Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches,” J. All. Comp. 509, 5882–5886 (2011).
[Crossref]

J. Am. Cer. Soc. (1)

D. Li and S. Komarneni, “Microwave-assisted polyol process for synthesis of Ni nanoparticles,” J. Am. Cer. Soc. 89, 1510–1517 (2006).
[Crossref]

J. Coll. Int. Sci. (1)

S. H. Wu and D. H. Chen, “Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol,” J. Coll. Int. Sci. 259, 282–286 (2003).
[Crossref]

J. Nanopart. Res. (1)

A. Plaud, A. Sarrazin, J. Béal, J. Proust, P. Royer, J. L. Bijeon, J. Plain, P. M. Adam, and T. Maurer, “Copolymer template control of gold nanoparticle synthesis via thermal annealing,” J. Nanopart. Res. 15, 1–6 (2013).
[Crossref]

J. Phys. Chem. C (1)

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115, 21826–21831 (2011).
[Crossref]

J. Phys. D (1)

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D 36, 167–181 (2003).
[Crossref]

J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures (1)

S. Sako, O. Kazunari, S. Masahiro, and B. Shunji, “Magnetic property of NiO ultrafine particles with a small Ni core,” J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 15, 1338–1342 (1997).
[Crossref]

Nano Lett. (3)

W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).
[Crossref]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Å kerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 64370–4379 (1972).
[Crossref]

T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J. Y. Piquemal, G. Viau, and C. Gatel, “Exchange bias in Co/CoO core-shell nanowires : Role of antiferromagnetic superparamagnetic fluctuations,” Phys. Rev. B 80, 1–9 (2009).
[Crossref]

Phys. Rev. Lett. (2)

W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy,” Phys. Rev. Lett. 105, 904–913 (1957).

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Science (1)

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

Small (2)

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelies, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Å kerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011).
[Crossref] [PubMed]

Other (2)

W. J. Moore, “Seven Solid States,” in An Introduction to the Chemistry and Physics of Solids (W. A. Benjamin, 1970).

F.J. Garicia de Abajo, http://nanophotonics.csic.es/static/widgets/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the synthesis process. A thin Ni layer is deposited by e-beam evaporator in vacuum then this layer is annealed at low pressure.

Fig. 2
Fig. 2

A, B and C: Size distribution of Ni particles after dewetting of a Ni layer whose initial thickness is 5 nm (A), 10 nm (B) and 15 nm (C). SEM pictures correspond to each size distribution with a scale bar of 200 nm. The average diameter is assessed to 13, 23 and 44 nm respectively. The Full-Width at High Maximum (FWHM) is 8.9 nm, 15.6 nm and 34.1 nm for graph A, B, C, respectively, which indicates a relative dispersion of Ni size. D: evolution of the average size of Ni particles depending on the initial layer thickness. The balance bar corresponds to the FWHM for each average size. The NPs sizes were determined by statistical SEM images analysis over more than 300 NPs.

Fig. 3
Fig. 3

A: Extinction spectrum of Ni layer of 5 nm thick, before thermal annealing (blue curve) and after thermal annealing (pink curve). The interband transitions peak and the plasmonic peak are visible on the pink curve respectively at 233 nm and 296 nm. The 10 nm layer after annealing is represented by the red curve and the 15 nm layer after annealing by the brown curve. B: Spectrum of the plasmonic component from the extinction spectrum of Ni particles obtained by thermal annealing of 5 nm thick (pink curve), 10 nm thick (red curve) and 15 nm thick (brown curve). C: Spectrum of the interband transitions component from the extinction spectrum of Ni particles obtained by thermal annealing of 5 nm thick (light blue curve), 10 nm thick (blue curve) and 15 nm thick (dark blue curve).

Fig. 4
Fig. 4

A: Calculated extinction spectrum of Ni nanoparticles of 10.5, 18, and 29 nm diameter with an external refracting index of 1.32. The corresponding shell thickness are 1.25, 2.5 and 7.5 nm. B: Plasmonic component from the theoretical extinction spectrum of Ni particles obtained by thermal annealing. C: Spectrum of the interband transitions component from the theoretical extinction spectrum of Ni particles

Fig. 5
Fig. 5

A: SEM image of Ni NPs whose diameter distribution is centered at 44nm. The shell is visible by the difference of contrast on the surface of the NPs. The scale bar is 100 nm. B: Thickness distribution of measured shell thickness on SEM images. The average value of 7.8 nm is determined by Gaussian fit on measurement.

Fig. 6
Fig. 6

Hysteresis cycle of the Ni particles obtained by thermal annealing of an initially 10 nm thin film Ni layer. The hysteresis cycle was measured at room temperature using a vibrating sample magnetometer (VSM).

Metrics