Abstract

Vanadium dioxide undergoes a reversible metal-insulator phase change near 68°C. This transition is often recognized for its electronic properties; however, the concomitant change in optical properties is also attractive. One application is to exploit the optical properties within this transition region to control and tune the refractive index between its insulating and metallic states. To achieve this, we used atomic layer deposition to grow high-quality, low-temperature (≤150°C), ultrathin films of vanadium dioxide on sapphire substrates. Measurements of optical transmittance and reflectance as a function of temperature are then used to create wavelength and temperature dependent models of the complex optical refractive index. Our models create a foundation for developing vanadium dioxide as a tunable refractive index material.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric hysteresis in vanadium dioxide thin films

Marc Currie, Virginia D. Wheeler, Brian Downey, Neeraj Nepal, Syed B. Qadri, James A. Wollmershauser, Jason Avila, and Luke Nyakiti
Opt. Mater. Express 9(9) 3717-3728 (2019)

Optical properties of vanadium dioxide and vanadium pentoxide thin films

Elizabeth E. Chain
Appl. Opt. 30(19) 2782-2787 (1991)

Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films

Taixing Huang, Lin Yang, Jun Qin, Fei Huang, Xupeng Zhu, Peiheng Zhou, Bo Peng, Huigao Duan, Longjiang Deng, and Lei Bi
Opt. Mater. Express 6(11) 3609-3621 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Davis and M. J. F. Digonnet, “Measurements of thermal effects in fibers doped with cobalt and vanadium,” J. Lightwave Technol. 18(2), 161–165 (2000).
    [Crossref]
  2. Z. Matjasec, S. Campelj, and D. Donlagic, “All-optical, thermo-optical path length modulation based on the vanadium-doped fibers,” Opt. Express 21(10), 11794–11807 (2013).
    [Crossref] [PubMed]
  3. F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  4. A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared optical properties of vanadium dioxide above and below the transition temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
    [Crossref]
  5. S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
    [Crossref]
  6. M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
    [Crossref]
  7. J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
    [Crossref] [PubMed]
  8. N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc. A 62(7), 416–422 (1949).
    [Crossref]
  9. J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418–421 (1985).
    [Crossref] [PubMed]
  10. R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A view from band theory,” Phys. Rev. Lett. 72(21), 3389–3392 (1994).
    [Crossref] [PubMed]
  11. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  12. F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
    [Crossref]
  13. A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
    [Crossref]
  14. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  15. S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
    [Crossref] [PubMed]
  16. H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive–metallic phase transition,” Jpn. J. Appl. Phys. 46(5), L113–L116 (2007).
    [Crossref]
  17. O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 06-106 micrometer,” J. Opt. Technol. 66(5), 391 (1999).
    [Crossref]
  18. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [Crossref] [PubMed]
  19. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20(8), 8700–8709 (2012).
    [Crossref] [PubMed]
  20. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  21. H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
    [Crossref]
  22. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
    [Crossref] [PubMed]
  23. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  24. P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
    [Crossref]
  25. G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
    [Crossref]
  26. A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
    [Crossref]
  27. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
    [Crossref]
  28. D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
    [Crossref]
  29. P. Jin, K. Yoshimura, and S. Tanemura, “Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films,” J. Vac. Sci. Technol. Vac. Surf. Films 15(3), 1113–1117 (1997).
    [Crossref]
  30. J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
    [Crossref]
  31. G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
    [Crossref]
  32. M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 Films,” Appl. Opt. 37(10), 1858–1861 (1998).
    [Crossref] [PubMed]
  33. E. N. Fuls, D. H. Hensler, and A. R. Ross, “Reactively sputtered vanadium dioxide thin films,” Appl. Phys. Lett. 10(7), 199–201 (1967).
    [Crossref]
  34. A. Joushaghani, “Micro- and Nano-scale Optoelectronic Devices Using Vanadium Dioxide,” Thesis (2014).
  35. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
    [Crossref] [PubMed]
  36. N. Davila, R. Cabrera, and N. Sepulveda, “Programming and projection of near IR images using films,” IEEE Photonics Technol. Lett. 24(20), 1830–1833 (2012).
    [Crossref]

2015 (2)

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

2014 (2)

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

2013 (5)

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Z. Matjasec, S. Campelj, and D. Donlagic, “All-optical, thermo-optical path length modulation based on the vanadium-doped fibers,” Opt. Express 21(10), 11794–11807 (2013).
[Crossref] [PubMed]

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

2012 (6)

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20(8), 8700–8709 (2012).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

N. Davila, R. Cabrera, and N. Sepulveda, “Programming and projection of near IR images using films,” IEEE Photonics Technol. Lett. 24(20), 1830–1833 (2012).
[Crossref]

2011 (2)

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (2)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive–metallic phase transition,” Jpn. J. Appl. Phys. 46(5), L113–L116 (2007).
[Crossref]

2004 (1)

F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[Crossref]

2002 (1)

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

1997 (1)

P. Jin, K. Yoshimura, and S. Tanemura, “Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films,” J. Vac. Sci. Technol. Vac. Surf. Films 15(3), 1113–1117 (1997).
[Crossref]

1994 (1)

R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A view from band theory,” Phys. Rev. Lett. 72(21), 3389–3392 (1994).
[Crossref] [PubMed]

1987 (1)

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

1985 (1)

J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418–421 (1985).
[Crossref] [PubMed]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

1967 (1)

E. N. Fuls, D. H. Hensler, and A. R. Ross, “Reactively sputtered vanadium dioxide thin films,” Appl. Phys. Lett. 10(7), 199–201 (1967).
[Crossref]

1966 (1)

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared optical properties of vanadium dioxide above and below the transition temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

1949 (1)

N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc. A 62(7), 416–422 (1949).
[Crossref]

Ablett, J. M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Adelmann, C.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Allen, J. W.

J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418–421 (1985).
[Crossref] [PubMed]

Allen, P. B.

R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A view from band theory,” Phys. Rev. Lett. 72(21), 3389–3392 (1994).
[Crossref] [PubMed]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Atkin, J. M.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Atwater, H. A.

Aydin, K.

Babulanam, S. M.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared optical properties of vanadium dioxide above and below the transition temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bechtel, H. A.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Benkahoul, M.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Berweger, S.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boyd, E. M.

Brehm, M.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Briggs, R. M.

Cabrera, R.

N. Davila, R. Cabrera, and N. Sepulveda, “Programming and projection of near IR images using films,” IEEE Photonics Technol. Lett. 24(20), 1830–1833 (2012).
[Crossref]

Campelj, S.

Cao, J.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chae, B.-G.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Chaker, M.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Chavez, E. K.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Cheng, C.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Cloots, R.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Cobden, D. H.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Conard, T.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Coy, J. M.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Cros, F.

F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[Crossref]

Cueff, S.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Cuypers, D.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Davila, N.

N. Davila, R. Cabrera, and N. Sepulveda, “Programming and projection of near IR images using films,” IEEE Photonics Technol. Lett. 24(20), 1830–1833 (2012).
[Crossref]

Davis, M. K.

Davis, T. J.

De Coninck, J.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

De Schutter, B.

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Deduytsche, D.

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Deparis, O.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Detavernier, C.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Dicken, M. J.

Diest, K.

Digonnet, M. J. F.

Donlagic, D.

Earl, S. K.

Elshocht, S. V.

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Eriksson, T. S.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Fan, W.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Fei, Z.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Franquet, A.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Fu, D.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Fuls, E. N.

E. N. Fuls, D. H. Hensler, and A. R. Ross, “Reactively sputtered vanadium dioxide thin films,” Appl. Phys. Lett. 10(7), 199–201 (1967).
[Crossref]

Gavarri, J.-R.

F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Goumri-Said, S.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Granqvist, C. G.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Guggenheim, H. J.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared optical properties of vanadium dioxide above and below the transition temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Guinneton, F.

F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[Crossref]

Haddad, E.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Haglund, R. F.

Hatano, T.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Hensler, D. H.

E. N. Fuls, D. H. Hensler, and A. R. Ross, “Reactively sputtered vanadium dioxide thin films,” Appl. Phys. Lett. 10(7), 199–201 (1967).
[Crossref]

Ho, P.-C.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Huang, C.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Hunter, S.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Iwasa, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

James, T. D.

Jamroz, W.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Jin, P.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive–metallic phase transition,” Jpn. J. Appl. Phys. 46(5), L113–L116 (2007).
[Crossref]

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 Films,” Appl. Opt. 37(10), 1858–1861 (1998).
[Crossref] [PubMed]

P. Jin, K. Yoshimura, and S. Tanemura, “Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films,” J. Vac. Sci. Technol. Vac. Surf. Films 15(3), 1113–1117 (1997).
[Crossref]

Jurczak, M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Kakiuchida, H.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive–metallic phase transition,” Jpn. J. Appl. Phys. 46(5), L113–L116 (2007).
[Crossref]

Kasirga, T. S.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kawasaki, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Kebaili, H.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Keilmann, F.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, B.-J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, H.-T.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Konovalova, O. P.

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Kruzelecky, R.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Kurvits, J. A.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Lafort, A.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Li, D.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Liu, B.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Liu, K.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Lo, K.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Lucas, S.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Ma, J.

Maple, M. B.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Margot, J.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Martens, K.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Marvel, R. E.

Maseri, F.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Matjasec, Z.

McCallum, J. C.

Meersschaut, J.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Menon, V. M.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Mirabella, F.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Mott, N. F.

N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc. A 62(7), 416–422 (1949).
[Crossref]

Nakano, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Nakao, S.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive–metallic phase transition,” Jpn. J. Appl. Phys. 46(5), L113–L116 (2007).
[Crossref]

Narimanov, E.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Niklasson, G. A.

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Okuyama, D.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Ono, S.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Peter, A. P.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Poinas, P.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Premkumar, P. A.

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Pryce, I. M.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Radu, I.

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Radu, I. P.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Ramanathan, S.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rampelberg, G.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Raschke, M. B.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Roberts, A.

Ross, A. R.

E. N. Fuls, D. H. Hensler, and A. R. Ross, “Reactively sputtered vanadium dioxide thin films,” Appl. Phys. Lett. 10(7), 199–201 (1967).
[Crossref]

Rueff, J.-P.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Sauques, L.

F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[Crossref]

Sawatzky, G. A.

J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418–421 (1985).
[Crossref] [PubMed]

Schaekers, M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Schulz, W. W.

R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A view from band theory,” Phys. Rev. Lett. 72(21), 3389–3392 (1994).
[Crossref] [PubMed]

Sepulveda, N.

N. Davila, R. Cabrera, and N. Sepulveda, “Programming and projection of near IR images using films,” IEEE Photonics Technol. Lett. 24(20), 1830–1833 (2012).
[Crossref]

Shaganov, I. I.

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shibuya, K.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Sidorov, A. I.

Squier, J.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Sweatlock, L. A.

Tanemura, S.

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 Films,” Appl. Opt. 37(10), 1858–1861 (1998).
[Crossref] [PubMed]

P. Jin, K. Yoshimura, and S. Tanemura, “Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films,” J. Vac. Sci. Technol. Vac. Surf. Films 15(3), 1113–1117 (1997).
[Crossref]

Tao, T.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Tazawa, M.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive–metallic phase transition,” Jpn. J. Appl. Phys. 46(5), L113–L116 (2007).
[Crossref]

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1-xWxO2 Films,” Appl. Opt. 37(10), 1858–1861 (1998).
[Crossref] [PubMed]

Toeller, M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

Tokura, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Valmalette, J.-C.

F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[Crossref]

Van Elshocht, S.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared optical properties of vanadium dioxide above and below the transition temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Voué, M.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

Walavalkar, S.

Wentzcovitch, R. M.

R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A view from band theory,” Phys. Rev. Lett. 72(21), 3389–3392 (1994).
[Crossref] [PubMed]

Wong, B.

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Wong, F. J.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Wu, J.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yoshimura, K.

P. Jin, K. Yoshimura, and S. Tanemura, “Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films,” J. Vac. Sci. Technol. Vac. Surf. Films 15(3), 1113–1117 (1997).
[Crossref]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Zaanen, J.

J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418–421 (1985).
[Crossref] [PubMed]

Zhang, R.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Zhou, Y.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Zia, R.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

E. N. Fuls, D. H. Hensler, and A. R. Ross, “Reactively sputtered vanadium dioxide thin films,” Appl. Phys. Lett. 10(7), 199–201 (1967).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

P. A. Premkumar, M. Toeller, I. P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, and S. V. Elshocht, “Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors,” ECS J. Solid State Sci. Technol. 1(4), P169–P174 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Davila, R. Cabrera, and N. Sepulveda, “Programming and projection of near IR images using films,” IEEE Photonics Technol. Lett. 24(20), 1830–1833 (2012).
[Crossref]

J. Appl. Phys. (1)

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113(4), 043707 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Technol. (1)

J. Vac. Sci. Technol. Vac. Surf. Films (1)

P. Jin, K. Yoshimura, and S. Tanemura, “Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films,” J. Vac. Sci. Technol. Vac. Surf. Films 15(3), 1113–1117 (1997).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive–metallic phase transition,” Jpn. J. Appl. Phys. 46(5), L113–L116 (2007).
[Crossref]

Nat. Commun. (1)

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Nature (2)

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. B (1)

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Phys. Rev. Lett. (4)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared optical properties of vanadium dioxide above and below the transition temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418–421 (1985).
[Crossref] [PubMed]

R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A view from band theory,” Phys. Rev. Lett. 72(21), 3389–3392 (1994).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Proc. Phys. Soc. A (1)

N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc. A 62(7), 416–422 (1949).
[Crossref]

Science (1)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Sol. Energy Mater. (1)

S. M. Babulanam, T. S. Eriksson, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2 films for energy-efficient windows,” Sol. Energy Mater. 16(5), 347–363 (1987).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. Benkahoul, M. Chaker, J. Margot, E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells 95(12), 3504–3508 (2011).
[Crossref]

Thin Solid Films (3)

F. Guinneton, L. Sauques, J.-C. Valmalette, F. Cros, and J.-R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[Crossref]

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519(10), 3283–3287 (2011).
[Crossref]

G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Other (1)

A. Joushaghani, “Micro- and Nano-scale Optoelectronic Devices Using Vanadium Dioxide,” Thesis (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Atomic force microscopy of our VO2 shows crystal grain sizes on the order of 20-40nm and an RMS roughness of 3.2nm. (b) Raman spectroscopy verifies the quality of the crystals and that at room temperature they exhibit the monoclinic VO2 phase.
Fig. 2
Fig. 2 Spectral (a) transmittance and (b) reflectance of VO2 on c-plane Al2O3 changes monotonically as a function of temperature from 24 to 90°C (arrows indicate direction of increasing temperature). (c) The change in transmittance (T – T0)/ T0 and (d) the change in reflectance (R – R0)/ R0 highlight temperature dependent changes of VO2 by comparing to their value at room temperature (T0 and R0). The inset in (b) shows the change in transmittance near 2000 nm versus temperature to reveal a transition temperature of 61°C.
Fig. 3
Fig. 3 (a) The spectral absorbance of VO2 changes as a function of temperature (from 24 to 90 °C) with arrow indicating increasing temperature, as calculated from the transmittance and reflectance data. (b) The spectral absorptance normalized to the room temperature value shows the changing characteristics of VO2 with temperature and reveals subtle behavior near 500 nm.
Fig. 4
Fig. 4 A series of complex oscillators are used to model the optical permittivity of VO2 in both the metallic (red lines) and insulating (black lines) phases. Both (a) two- and (b) three-oscillator models (solid lines) offer reasonable fits to the transmittance, reflectance, and absorptance data (open circles), however, the three-term oscillator model provides a better fit in the visible region.
Fig. 5
Fig. 5 Complex permittivity (a and c) and refractive index (b and d) from our model of VO2 in the insulating (a and b) and metallic phases (c and d). The plots compare our model (solid lines) with previous results for VO2 films grown by other techniques: sputtered [11,32,34]; and pulsed laser deposition [18,20].
Fig. 6
Fig. 6 A temperature-tunable refractive index model was created for VO2. The open circles in the plot are the measured transmittance, reflectance, and absorptance at various temperatures, while the solid lines are the predicted values from our temperature- and wavelength-dependent model of VO2.

Tables (1)

Tables Icon

Table 1 – Parameters for the two- and three-oscillator models of the permittivity of VO2 in its metallic and insulating phases

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε{ E }=  ε +  n A n ( E n 2   E 2 )i E B n  

Metrics