Abstract

Tungsten disulfide (WS2) sheet wrapped on the tapered region of micro fiber (MF) and its humidity sensing are proposed and demonstrated. WS2 coated MF (WS2CMF) is demonstrated to enhance the interaction and contact area between WS2 and the strong evanescent field of optical fiber. An enhancement in sensitivity (0.196 dB/%RH) of the WS2CMF is achieved in a RH range from 37%RH to 90%RH. Furthermore, the proposed WS2CMF shows a good repeatability from 40%RH to 75%RH and a rapid response to periodic breath stimulus. This WS2CMF holds great potential in all optical sensing networks owing to the advantages of high sensitivity, compact size and low cost.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tungsten disulfide (WS2) based all-fiber-optic humidity sensor

Yunhan Luo, Chaoying Chen, Kai Xia, Shuihua Peng, Heyuan Guan, Jieyuan Tang, Huiui Lu, Jianhui Yu, Jun Zhang, Yi Xiao, and Zhe Chen
Opt. Express 24(8) 8956-8966 (2016)

Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing

Tenghui Ouyang, Limin Lin, Kai Xia, Mengjiang Jiang, Yuwei Lang, Heyuan Guan, Jianhui Yu, Dongquan Li, Guanglei Chen, Wenguo Zhu, Yongchun Zhong, Jieyuan Tang, Jiangli Dong, Huihui Lu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(9) 9823-9833 (2017)

Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring

Dongquan Li, Huihui Lu, Wentao Qiu, Jiangli Dong, Heyuan Guan, Wenguo Zhu, Jianhui Yu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(23) 28407-28416 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
    [Crossref]
  2. Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
    [Crossref]
  3. G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
    [Crossref] [PubMed]
  4. N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
    [Crossref]
  5. R. Aneesh and S. K. Khijwania, “Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity,” Appl. Opt. 51(12), 2164–2171 (2012).
    [Crossref] [PubMed]
  6. R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
    [Crossref]
  7. H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
    [Crossref]
  8. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  9. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
    [Crossref] [PubMed]
  10. D. Li, H. Lu, J. Yu, H. Guan, Y. Luo, J. Zhang, Z. Wu, and Z. Chen, “Fiber optic humidity sensing with few layers molybdenum disulfide,” in SPIE Photonics Europe (2016), 98992P.
  11. D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
    [Crossref]
  12. J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
    [Crossref] [PubMed]
  13. Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
    [Crossref] [PubMed]
  14. C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
    [Crossref]
  15. A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
    [Crossref] [PubMed]
  16. Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
    [Crossref] [PubMed]
  17. M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
    [Crossref]
  18. N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
    [Crossref] [PubMed]
  19. Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
    [Crossref] [PubMed]
  20. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  21. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
    [Crossref]
  22. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
    [Crossref] [PubMed]
  23. H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
    [Crossref]
  24. L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
    [Crossref]
  25. J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
    [Crossref] [PubMed]
  26. A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
    [Crossref]
  27. Z. Zhang, C. Mou, Z. Yan, Y. Wang, K. Zhou, and L. Zhang, “Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating,” Opt. Express 23(2), 1353–1360 (2015).
    [Crossref] [PubMed]
  28. O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77, 125416 (2007).
  29. Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
    [Crossref]
  30. A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
    [Crossref]
  31. H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” IOP Conference Series: Materials Science and Engineering 99, 012025 (2015).
  32. L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
    [Crossref]
  33. Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
    [Crossref] [PubMed]

2016 (6)

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

2015 (10)

Z. Zhang, C. Mou, Z. Yan, Y. Wang, K. Zhou, and L. Zhang, “Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating,” Opt. Express 23(2), 1353–1360 (2015).
[Crossref] [PubMed]

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” IOP Conference Series: Materials Science and Engineering 99, 012025 (2015).

G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
[Crossref] [PubMed]

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

2014 (7)

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

2013 (3)

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

2012 (2)

2009 (1)

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

2008 (2)

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

Abdullah, T. N. R.

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” IOP Conference Series: Materials Science and Engineering 99, 012025 (2015).

Ahmad, H.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
[Crossref]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Alberto, N.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Ambrosi, A.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

André, P. S.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Aneesh, R.

Antunes, P.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Arof, H.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Bao, Q.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Batumalay, M.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Berkdemir, A.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Berner, N. C.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Bo, L.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Botelloméndez, A. R.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Bougouma, M.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Cai, X.

Carey, B.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Charlier, J.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chen, C.

Chen, J.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Chen, Z.

Cheng, J.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Chia, C.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chrimes, A. F.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Correia, S. F. H.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Crespi, V. H.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Daeneke, T.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Domingues, M. F.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Doneux, T.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Duesberg, G. S.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Eda, G.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Elías, A. L.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Eng, A. Y. S.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

Fan, G.

G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
[Crossref] [PubMed]

Farrell, G.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Ferreira, R. A. S.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Fu, Z.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Gao, C.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Gao, R.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Ge, W.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Grattan, K. T. V.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

Gu, F.

Guan, H.

Guo, X.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Gutiérrez, H. R.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Hao, X.

G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
[Crossref] [PubMed]

Harun, S. W.

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” IOP Conference Series: Materials Science and Engineering 99, 012025 (2015).

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

He, X.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Hersam, M. C.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Huang, M.

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

Huo, N.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Irawati, N.

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” IOP Conference Series: Materials Science and Engineering 99, 012025 (2015).

Jariwala, D.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Jiang, L.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Jiang, Y.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Jin, S.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Jung, B.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Kalantar-Zadeh, K.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Khijwania, S. K.

Kim, H.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Kim, Y.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Kou, T.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Late, D. J.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Lauhon, L. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Lee, H.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Lee, K.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Li, J.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Li, L.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Li, L. J.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, S.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

Li, S. S.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Li, W.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Li, Y. X.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Liao, G.

Lin, L.

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

Lin, W.

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

Liu, B.

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

Liu, D.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Liu, H.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

Liu, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Loh, K. P.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Lokman, A.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Lópezurías, F.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

Lou, W.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Lu, D. F.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Lu, H.

Luo, Y.

Marks, T. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Marques, C.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Mayorga-Martinez, C. C.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

Mcevoy, N.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Miao, Y.

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

Morrish, R.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Mou, C.

Nodehi, S.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

O’Brien, M.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Ou, J. Z.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Park, H.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Peng, S.

Perealópez, N.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Pinto, J. L.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Pumera, M.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Qi, Z. M.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Qiu, H.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Rahman, H. A.

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” IOP Conference Series: Materials Science and Engineering 99, 012025 (2015).

Rahman, M. T.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
[Crossref]

Razak, M. Z. A.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
[Crossref]

Rotbart, A.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Russo, S. P.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Sakeh, S. N. A.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
[Crossref]

Sangwan, V. K.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Semenova, Y.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Shan, W.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Shen, C.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Shen, Y.

G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
[Crossref] [PubMed]

Shentu, F.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Sofer, Z.

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

Song, B.

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

Song, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Sophia, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Sun, T.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

Tan, S.

Tang, J.

Tavares, C.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Terrones, H.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Terrones, M.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Tong, L.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

Wang, B.

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Wang, P.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Wang, Y.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Z. Zhang, C. Mou, Z. Yan, Y. Wang, K. Zhou, and L. Zhang, “Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating,” Opt. Express 23(2), 1353–1360 (2015).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Wang, Z.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Wei, Q.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Wei, Z.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Wlodarski, W.

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Wolden, C. A.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Xia, J. B.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Xia, K.

Xia, L.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Xiao, Y.

Xu, Q.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Xu, Z.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Xue, Y.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Yan, Z.

Yang, S.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

Yin, X.

Yu, J.

Yuan, Z.

G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
[Crossref] [PubMed]

Zang, Z.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Zhang, H.

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Zhang, J.

Zhang, L.

Zhang, M.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Zhang, Z.

Zheng, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Zhou, K.

Zhou, Z.

G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
[Crossref] [PubMed]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Zulkifli, M. Z.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
[Crossref]

ACS Nano (3)

J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li, and K. Kalantar-Zadeh, “Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing,” ACS Nano 9(10), 10313–10323 (2015).
[Crossref] [PubMed]

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T‐WS2 for Selective Impedimetric Vapor Sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

Analyst (Lond.) (1)

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Chem. Commun. (Camb.) (1)

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS 2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

IEEE Sens. J. (1)

H. Liu, Y. Miao, B. Liu, W. Lin, H. Zhang, B. Song, M. Huang, and L. Lin, “Relative humidity sensor based on s-taper fiber coated with SiO2 nanoparticles,” IEEE Sens. J. 15(6), 3424 (2015).
[Crossref]

IOP Conference Series: Materials Science and Engineering (1)

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” IOP Conference Series: Materials Science and Engineering 99, 012025 (2015).

Microw. Opt. Technol. Lett. (2)

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Opt. Express (4)

Opt. Quantum Electron. (1)

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 216 (2016).
[Crossref]

Optik - International Journal for Light and Electron Optics (1)

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik - International Journal for Light and Electron Optics 127(5), 3158–3161 (2016).
[Crossref]

Sci. Rep. (3)

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. Lópezurías, J. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Sens. Actuators A Phys. (2)

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Sens. Actuators B Chem. (2)

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Sensors (Basel) (2)

G. Fan, Y. Shen, X. Hao, Z. Yuan, and Z. Zhou, “Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks,” Sensors (Basel) 15(9), 23745–23762 (2015).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Other (2)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77, 125416 (2007).

D. Li, H. Lu, J. Yu, H. Guan, Y. Luo, J. Zhang, Z. Wu, and Z. Chen, “Fiber optic humidity sensing with few layers molybdenum disulfide,” in SPIE Photonics Europe (2016), 98992P.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of the WS2CMF; (b) Morphological characteristic of MF; (c) Scanning electron microscopy (SEM) image of the WS2CMF cross section; (d) enlarged view for the region marked by a dotted line in (c); (e) SEM image of the WS2CMNF tapered region, and enlarged view for the region; (f) Raman spectrum of the WS2 on MF.
Fig. 2
Fig. 2 Variation of transmitted optical power in MF during the deposition of WS2 onto the MF.
Fig. 3
Fig. 3 Experimental set-up for humidity sensing.
Fig. 4
Fig. 4 (a) Variation of relative humidity in the chamber monitored by commercial humidity/temperature meter and variation of output optical RP through; (b) SMF; (c) MF and (d) WS2CMF.
Fig. 5
Fig. 5 Variation of actual RH and RP of WS2CMF during (a) 10- 60 min and (b) 205- 255 min.
Fig. 6
Fig. 6 Output optical relative power of WS2CMF and MF as a function of relative humidity.
Fig. 7
Fig. 7 Schematic diagram of human breath to the WS2CMF.
Fig. 8
Fig. 8 WS2CMF response to breath exposure.
Fig. 9
Fig. 9 Variation of output optical relative power when adjusting the RH between 40%RH and 75%RH for several consecutive cycles (Temperature = 25 °C).

Tables (1)

Tables Icon

Table 1 Characteristics of various fiber optic humidity sensors coated with different types films

Metrics