Abstract

In this paper, we present a THZ MMs filter with two independent stop-bands based on periodic metallic resonant structures patterned on the top of a flexible polyimide wafer. The optimized geometry parameters were obtained by numerous simulations using full wave finite integration technology of CST 2015. The resonant frequencies of the filter were 126.32 GHZ and 177.32 GHZ with 3-dB bandwidths of 19.3 GHZ and 9.1 GHZ, respectively. The S21 parameters can reach to −47.38 dB and −56.69 dB corresponding to two resonant peaks, which indicate the excellent stop-band performance. The MMs filter in our design is insensitive to the polarization angle of the incident EM waves due to the symmetrical characteristic of the proposed resonance structure. In order to intensively understand the transmission performance of the proposed MMs filter, a large number of simulations were performed based on the different permittivity, period of the unit cell, dielectric thickness, and geometric dimensions. The electric field and surface current distributions were analyzed to understand the mechanism of the EM wave transmission. The proposed MMs filter was fabricated using a surface micromachining process and tested using a THZ-TDS system. Measured terahertz transmission responses of the proposed MMs dual-band band-stop filter have reasonable correspondence with those from simulations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss flexible bilayer metamaterials in THz regime

Jeong Min Woo, Dongju Kim, Sajid Hussain, and Jae-Hyung Jang
Opt. Express 22(3) 2289-2298 (2014)

Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency

Xiong Li, Lanying Yang, Chenggang Hu, Xiangang Luo, and Minghui Hong
Opt. Express 19(6) 5283-5289 (2011)

Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths

Zhongchao Wei, Xianping Li, Jianjun Yin, Rong Huang, Yuebo Liu, Wei Wang, Hongzhan Liu, Hongyun Meng, and Ruisheng Liang
Opt. Express 24(13) 14344-14351 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Vesselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  2. S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
    [Crossref] [PubMed]
  5. A. G. Ramm, “Does negative refraction make a perfect lens?” Phys. Lett. A 372(43), 6518–6520 (2008).
    [Crossref]
  6. Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
    [Crossref]
  7. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
    [Crossref] [PubMed]
  8. M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
    [Crossref]
  9. S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
    [Crossref]
  10. D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
    [Crossref]
  11. J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
    [Crossref]
  12. G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
    [Crossref]
  13. K. K. Amireddy, K. Balasubramaniam, and P. Rajagopal, “Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components,” Appl. Phys. Lett. 108(22), 224101 (2016).
    [Crossref]
  14. K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
    [Crossref]
  15. R. B. Hwang, H. W. Liu, and C. Y. Chin, “A metamaterial-based e-plane horn antenna,” Progress In Electromagnetics Research-Pier 93, 275–289 (2009).
    [Crossref]
  16. M. Yoo and S. Lim, “SRR- and CSRR-loaded ultra-wideband (UWB) antenna with tri-band notch capability,” J. Electromagn. Waves Appl. 27(17), 2190–2197 (2013).
    [Crossref]
  17. J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(1), 265–271 (2006).
    [Crossref]
  18. C. Sabah and S. Uckun, “Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Progress In Electromagnetics Research-Pier 91, 349–364 (2009).
    [Crossref]
  19. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
    [Crossref] [PubMed]
  20. R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
    [Crossref]
  21. L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
    [Crossref]
  22. Z. Li and Y. J. Ding, “Terahertz broadband-stop filters,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500705 (2013).
    [Crossref]
  23. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37(5), 906–908 (2012).
    [Crossref] [PubMed]
  24. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
    [Crossref]
  25. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  26. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref] [PubMed]
  27. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
    [Crossref] [PubMed]
  28. Z. Wei, X. Li, J. Yin, R. Huang, Y. Liu, W. Wang, H. Liu, H. Meng, and R. Liang, “Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths,” Opt. Express 24(13), 14344–14351 (2016).
    [Crossref] [PubMed]

2016 (8)

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
[Crossref]

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

K. K. Amireddy, K. Balasubramaniam, and P. Rajagopal, “Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components,” Appl. Phys. Lett. 108(22), 224101 (2016).
[Crossref]

Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
[Crossref]

Z. Wei, X. Li, J. Yin, R. Huang, Y. Liu, W. Wang, H. Liu, H. Meng, and R. Liang, “Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths,” Opt. Express 24(13), 14344–14351 (2016).
[Crossref] [PubMed]

2015 (1)

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

2013 (2)

Z. Li and Y. J. Ding, “Terahertz broadband-stop filters,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

M. Yoo and S. Lim, “SRR- and CSRR-loaded ultra-wideband (UWB) antenna with tri-band notch capability,” J. Electromagn. Waves Appl. 27(17), 2190–2197 (2013).
[Crossref]

2012 (1)

2011 (3)

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
[Crossref]

2010 (1)

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

2009 (2)

R. B. Hwang, H. W. Liu, and C. Y. Chin, “A metamaterial-based e-plane horn antenna,” Progress In Electromagnetics Research-Pier 93, 275–289 (2009).
[Crossref]

C. Sabah and S. Uckun, “Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Progress In Electromagnetics Research-Pier 91, 349–364 (2009).
[Crossref]

2008 (1)

A. G. Ramm, “Does negative refraction make a perfect lens?” Phys. Lett. A 372(43), 6518–6520 (2008).
[Crossref]

2007 (2)

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

2006 (5)

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(1), 265–271 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

2003 (1)

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref] [PubMed]

1968 (1)

V. G. Vesselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Amireddy, K. K.

K. K. Amireddy, K. Balasubramaniam, and P. Rajagopal, “Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components,” Appl. Phys. Lett. 108(22), 224101 (2016).
[Crossref]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

Azad, A. K.

Balasubramaniam, K.

K. K. Amireddy, K. Balasubramaniam, and P. Rajagopal, “Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components,” Appl. Phys. Lett. 108(22), 224101 (2016).
[Crossref]

Bearpark, T.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref] [PubMed]

Blary, K.

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

Bonache, J.

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(1), 265–271 (2006).
[Crossref]

Bulu, I.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

Cahill, R.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
[Crossref]

Cao, W.

Cao, Y. P.

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

Chen, B. R.

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

Chen, H. D.

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

Chen, H. T.

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, L.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Chen, P.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Chen, S.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Cheng, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Chin, C. Y.

R. B. Hwang, H. W. Liu, and C. Y. Chin, “A metamaterial-based e-plane horn antenna,” Progress In Electromagnetics Research-Pier 93, 275–289 (2009).
[Crossref]

Coutaz, J. L.

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
[Crossref] [PubMed]

Deng, G. S.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Dickie, R.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
[Crossref]

Ding, Y. J.

Z. Li and Y. J. Ding, “Terahertz broadband-stop filters,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

Duan, X.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Fu, S. M.

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

Fusco, V.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
[Crossref]

Gamble, H. S.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
[Crossref]

Garcia-Garcia, J.

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(1), 265–271 (2006).
[Crossref]

Garet, F.

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

Geng, Z. X.

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

Gil, I.

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(1), 265–271 (2006).
[Crossref]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, C.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Gu, J.

Han, J.

He, X. J.

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Huang, R.

Huang, Z. B.

Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
[Crossref]

Hwang, R. B.

R. B. Hwang, H. W. Liu, and C. Y. Chin, “A metamaterial-based e-plane horn antenna,” Progress In Electromagnetics Research-Pier 93, 275–289 (2009).
[Crossref]

Jeoung, S. C.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

Jia, Q. X.

Ju, N. P.

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, D. H.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

Khim, K. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

Lakhtakia, A.

Lee, J. W.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Lheurette, E.

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

Li, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Li, R. F.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Li, X.

Li, Y. T.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Li, Z.

Z. Li and Y. J. Ding, “Terahertz broadband-stop filters,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

Liang, R.

Lim, S.

M. Yoo and S. Lim, “SRR- and CSRR-loaded ultra-wideband (UWB) antenna with tri-band notch capability,” J. Electromagn. Waves Appl. 27(17), 2190–2197 (2013).
[Crossref]

Lin, A.

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

Lippens, D.

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

Liu, H.

Liu, H. W.

R. B. Hwang, H. W. Liu, and C. Y. Chin, “A metamaterial-based e-plane horn antenna,” Progress In Electromagnetics Research-Pier 93, 275–289 (2009).
[Crossref]

Liu, Y.

Liu, Y. M.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Luo, F.

Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
[Crossref]

Ma, R.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Ma, X. L.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
[Crossref]

Martin, F.

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(1), 265–271 (2006).
[Crossref]

Meng, H.

Mitchell, N.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Ozbay, E.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Pendry, J.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
[Crossref] [PubMed]

Qiu, L. Z.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Rajagopal, P.

K. K. Amireddy, K. Balasubramaniam, and P. Rajagopal, “Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components,” Appl. Phys. Lett. 108(22), 224101 (2016).
[Crossref]

Ramm, A. G.

A. G. Ramm, “Does negative refraction make a perfect lens?” Phys. Lett. A 372(43), 6518–6520 (2008).
[Crossref]

Sabah, C.

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

C. Sabah and S. Uckun, “Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Progress In Electromagnetics Research-Pier 91, 349–364 (2009).
[Crossref]

Schurig, D.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Seddon, N.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref] [PubMed]

Seo, M. A.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

Singh, R.

Smith, D. R.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Tang, J. Y.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
[Crossref]

Taylor, A. J.

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Tu, M. H.

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

Uckun, S.

C. Sabah and S. Uckun, “Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Progress In Electromagnetics Research-Pier 91, 349–364 (2009).
[Crossref]

Ustunsoy, M. P.

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

Vesselago, V. G.

V. G. Vesselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Wang, L.

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

Wang, S.

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

Wang, W.

Wang, Z. H.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
[Crossref]

Wei, Z.

Wu, D.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Xiao, Z. Y.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
[Crossref]

Xu, K. K.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
[Crossref]

Yang, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Yang, J.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Yang, Y. P.

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

Yang, Z. N.

Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
[Crossref]

Ye, H.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Yin, J.

Yin, Z. P.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Yoo, M.

M. Yoo and S. Lim, “SRR- and CSRR-loaded ultra-wideband (UWB) antenna with tri-band notch capability,” J. Electromagn. Waves Appl. 27(17), 2190–2197 (2013).
[Crossref]

Yu, Z. Y.

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Zhang, W.

Zhang, X.

Zhong, Y. K.

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

Zhou, W. C.

Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
[Crossref]

Zhu, D. M.

Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
[Crossref]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
[Crossref] [PubMed]

K. K. Amireddy, K. Balasubramaniam, and P. Rajagopal, “Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components,” Appl. Phys. Lett. 108(22), 224101 (2016).
[Crossref]

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Li and Y. J. Ding, “Terahertz broadband-stop filters,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

IEEE Photonics J. (1)

S. M. Fu, Y. K. Zhong, N. P. Ju, M. H. Tu, B. R. Chen, and A. Lin, “Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization,” IEEE Photonics J. 8(5), 1–11 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(1), 265–271 (2006).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011).
[Crossref]

J. Alloys Compd. (2)

Z. N. Yang, F. Luo, W. C. Zhou, D. M. Zhu, and Z. B. Huang, “Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces,” J. Alloys Compd. 687, 384–388 (2016).
[Crossref]

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

J. Electromagn. Waves Appl. (1)

M. Yoo and S. Lim, “SRR- and CSRR-loaded ultra-wideband (UWB) antenna with tri-band notch capability,” J. Electromagn. Waves Appl. 27(17), 2190–2197 (2013).
[Crossref]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Commun. (2)

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

D. Wu, Y. M. Liu, Z. Y. Yu, L. Chen, R. Ma, Y. T. Li, R. F. Li, and H. Ye, “Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial,” Opt. Commun. 380, 221–226 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optoelectron. Lett. (1)

L. Wang, Z. X. Geng, X. J. He, Y. P. Cao, Y. P. Yang, and H. D. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelectron. Lett. 11(1), 33–35 (2015).
[Crossref]

Phys. Lett. A (1)

A. G. Ramm, “Does negative refraction make a perfect lens?” Phys. Lett. A 372(43), 6518–6520 (2008).
[Crossref]

Phys. Rev. E (1)

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Plasmonics (1)

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, and Z. H. Wang, “Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle,” Plasmonics 11(5), 1393–1399 (2016).
[Crossref]

Progress In Electromagnetics Research-Pier (2)

R. B. Hwang, H. W. Liu, and C. Y. Chin, “A metamaterial-based e-plane horn antenna,” Progress In Electromagnetics Research-Pier 93, 275–289 (2009).
[Crossref]

C. Sabah and S. Uckun, “Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Progress In Electromagnetics Research-Pier 91, 349–364 (2009).
[Crossref]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Vesselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the dual-band band-stop MMs filter formed by an array of basic metallic resonance structures on the dielectric layer (b) Schematic of a unit cell represented by the black dotted line in (a).

Fig. 2
Fig. 2

Simulated S-parameters curves of the dual-band band-stop MMs filter.

Fig. 3
Fig. 3

Simulated S-parameters curves for different polarization angles of the normally incident EM waves.

Fig. 4
Fig. 4

Simulated S-parameters curves for different dimensions of (a) ‘ Hm ’ (b) ‘P’ (c) ‘ L1 ’ (d) ‘ L2 ’.

Fig. 5
Fig. 5

Simulated transmission performance for (a) the different relative electric permittivities (b) the different loss conditions.

Fig. 6
Fig. 6

Distribution of the electric field (a) at 126.32 GHZ (b) at 177.32 GHZ.

Fig. 7
Fig. 7

Distribution of the surface current (a) at 126.32 GHZ (b) at 177.32 GHZ.

Fig. 8
Fig. 8

Flow diagram of the surface micromachining process.

Fig. 9
Fig. 9

Fabricated prototype of the proposed MMs filter.

Fig. 10
Fig. 10

Comparison between the simulated and measured transmission performance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S 21 (ω)=10log[ | E dev ( ω ) | | E ref ( ω ) | ]

Metrics