Abstract

The growth of a range of crystal garnets by pulsed laser deposition is presented. As a result of optimization of the fabrication process, films can now be grown with optical quality approaching that of bulk material. To demonstrate this, we present laser performance from a Yb:YAG film with 70% slope efficiency and >16 W of output power. In addition, we present the first pulsed laser deposition of laser quality Yb:GGG and Yb:YGG. Watt-level laser performance is achieved for these two gallium garnets and routes to further performance improvements and potential applications of these films are discussed.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu)

Wenjuan Han, Kui Wu, Xueping Tian, Linhua Xia, Huaijin Zhang, and Junhai Liu
Opt. Mater. Express 3(7) 920-927 (2013)

Microchip laser operation of Yb-doped gallium garnets

Josep Maria Serres, Venkatesan Jambunathan, Pavel Loiko, Xavier Mateos, Haohai Yu, Huaijin Zhang, Junhai Liu, Antonio Lucianetti, Tomas Mocek, Konstantin Yumashev, Uwe Griebner, Valentin Petrov, Magdalena Aguiló, and Francesc Díaz
Opt. Mater. Express 6(1) 46-57 (2016)

An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition

James A. Grant-Jacob, Stephen J. Beecher, Tina L. Parsonage, Ping Hua, Jacob I. Mackenzie, David P. Shepherd, and Robert W. Eason
Opt. Mater. Express 6(1) 91-96 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3 Ga5O12 waveguide laser at 1.06 and 0.94 mum,” Opt. Lett. 22(13), 988–990 (1997).
    [Crossref] [PubMed]
  2. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  3. K. A. Sloyan, T. C. May-Smith, M. Zervas, R. W. Eason, S. Huband, D. Walker, and P. A. Thomas, “Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered Combinatorial Pulsed Laser Deposition,” Opt. Express 18(24), 24679–24687 (2010).
    [Crossref] [PubMed]
  4. R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
    [Crossref]
  5. S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
    [Crossref]
  6. R. Kumaran, S. E. Webster, S. Penson, W. Li, T. Tiedje, P. Wei, and F. Schiettekatte, “Epitaxial neodymium-doped sapphire films, a new active medium for waveguide lasers,” Opt. Lett. 34(21), 3358–3360 (2009).
    [Crossref] [PubMed]
  7. T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
    [Crossref] [PubMed]
  8. J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
    [Crossref]
  9. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref] [PubMed]
  10. M. J. Belovolov, E. M. Dianov, M. I. Timoschechkin, L. V. Barashov, A. M. Belovolov, M. A. Ivanov, N. P. Morosov, A. M. Prokhorov, and K. M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1.038 µm,” in Proceedings of European Meeting of Lasers and Electro-Optics (CLEO/Europe, 1996), p43, paper CML5.
  11. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
    [Crossref]
  12. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
    [Crossref]
  13. W. Han, K. Wu, X. Tian, L. Xia, H. Zhang, and J. Liu, “Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu),” Opt. Mater. Express 3(7), 920–927 (2013).
    [Crossref]
  14. J. M. Serres, V. Jambunathan, P. Loiko, X. Mateos, H. Yu, H. Zhang, J. Liu, A. Lucianetti, T. Mocek, K. Yumachev, U. Griebner, V. Petrov, M. Aguilo, and F. Diaz, “Microchip laser operation of Yb-doped gallium garnets,” Opt. Mater. Express 6(1), 46–57 (2016).
    [Crossref]
  15. W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [Crossref]
  16. J. I. Macknezie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron.21(1), (2015).
  17. S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
    [Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (1)

2013 (1)

2010 (2)

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

K. A. Sloyan, T. C. May-Smith, M. Zervas, R. W. Eason, S. Huband, D. Walker, and P. A. Thomas, “Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered Combinatorial Pulsed Laser Deposition,” Opt. Express 18(24), 24679–24687 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[Crossref]

2007 (2)

2003 (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

1997 (1)

Aguilo, M.

Anderson, A. A.

Balembois, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Beecher, S. J.

Bonner, C. L.

Boulon, G.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Brenier, A.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Chénais, S.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Choudhary, A.

Diaz, F.

Druon, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Eason, R. W.

J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
[Crossref] [PubMed]

K. A. Sloyan, T. C. May-Smith, M. Zervas, R. W. Eason, S. Huband, D. Walker, and P. A. Thomas, “Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered Combinatorial Pulsed Laser Deposition,” Opt. Express 18(24), 24679–24687 (2010).
[Crossref] [PubMed]

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[Crossref]

C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3 Ga5O12 waveguide laser at 1.06 and 0.94 mum,” Opt. Lett. 22(13), 988–990 (1997).
[Crossref] [PubMed]

J. I. Macknezie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron.21(1), (2015).

Fredrich-Thornton, S. T.

Gazia, R.

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[Crossref]

Georges, P.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Gill, D. S.

Grant-Jacob, J. A.

Griebner, U.

Grivas, C.

Han, W.

Heinrich, S.

S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Hua, P.

Huband, S.

Huber, G.

S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Jambunathan, V.

Jiang, M.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Kraenkel, C.

S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Kränkel, C.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

Kühn, H.

Kumaran, R.

Li, W.

Liu, J.

Loiko, P.

Lucianetti, A.

Mackenzie, J. I.

Macknezie, J. I.

J. I. Macknezie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron.21(1), (2015).

Mateos, X.

May-Smith, T. C.

Mocek, T.

Parsonage, T. L.

Penson, S.

Petermann, K.

Peters, R.

Petrov, V.

Schiettekatte, F.

Serres, J. M.

Shepherd, D. P.

Sloyan, K. A.

Szela, J. W.

J. I. Macknezie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron.21(1), (2015).

Thomas, P. A.

Tian, X.

Tiedje, T.

Vainos, N.

Waeselmann, S. H.

S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Walker, D.

Wang, J.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Wang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Webster, S. E.

Wei, P.

Wei, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Wu, K.

W. Han, K. Wu, X. Tian, L. Xia, H. Zhang, and J. Liu, “Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu),” Opt. Mater. Express 3(7), 920–927 (2013).
[Crossref]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Xia, L.

Yao, B.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Yu, H.

J. M. Serres, V. Jambunathan, P. Loiko, X. Mateos, H. Yu, H. Zhang, J. Liu, A. Lucianetti, T. Mocek, K. Yumachev, U. Griebner, V. Petrov, M. Aguilo, and F. Diaz, “Microchip laser operation of Yb-doped gallium garnets,” Opt. Mater. Express 6(1), 46–57 (2016).
[Crossref]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Yumachev, K.

Zervas, M.

Zhang, H.

Zhang, X.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Zhang, Y.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Zhang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. Cryst. Growth (1)

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[Crossref]

Laser Photonics Rev. (1)

S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Opt. Mater. Express (3)

Other (2)

M. J. Belovolov, E. M. Dianov, M. I. Timoschechkin, L. V. Barashov, A. M. Belovolov, M. A. Ivanov, N. P. Morosov, A. M. Prokhorov, and K. M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1.038 µm,” in Proceedings of European Meeting of Lasers and Electro-Optics (CLEO/Europe, 1996), p43, paper CML5.

J. I. Macknezie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron.21(1), (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Absorption and emission cross sections for the garnets. (a) Yb:YAG, (b) Yb:YGG, and (c) Yb:GGG.
Fig. 2
Fig. 2 Experimental configuration for the diode pumped waveguide laser experiments.
Fig. 3
Fig. 3 Laser performance of the diode pumped waveguide lasers. (a) Yb:GGG and YGG, and (b) Yb:YAG.
Fig. 4
Fig. 4 Laser performance of the 946 nm pumped Yb:YAG waveguide laser with inset of the laser mode. The roll-off in efficiency at higher pump powers is likely to be due to evaporation of the fluorinated liquid used to adhere the pump input mirror. Inset, image of laser mode at full output power of 260 mW. The laser mode diameter is 210 μm × 10 μm.

Tables (1)

Tables Icon

Table 1 Optical properties of the PLD grown Yb garnets

Metrics