Abstract

We report on the fabrication of three-dimensional (3D) Au nanoporous films with pores the size of ~200nm by laser-induced modification of as-prepared Au flat films. The construction of honeycomb-like Au porous structures should be attributed to a model of subsurface micro-explosive boiling followed by laser irradiating of Au flat films. The 3D honeycomb-like Au nanoporous films with unique interconnected frameworks exhibit ultrahigh surface enhanced Raman scattering (SERS) activity with an enhancement factor up to ~109 and excellent stability/reusability even after 300 cycles of repeated SERS analyses. The project of wielding laser light as a versatile tool for sculpting stable nanoporous films will prompt the renewed interest in the multi-functional nanomaterials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy

Hua Zhang, Linlin Xu, Yue Tian, Ming Chen, Xiangdong Liu, and Feng Chen
Opt. Express 25(23) 29389-29400 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
    [Crossref]
  2. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  3. M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
    [PubMed]
  4. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [Crossref] [PubMed]
  5. S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
    [Crossref] [PubMed]
  6. S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
    [Crossref] [PubMed]
  7. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  8. J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
    [Crossref] [PubMed]
  9. A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
    [Crossref] [PubMed]
  10. L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
    [Crossref] [PubMed]
  11. J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
    [Crossref] [PubMed]
  12. M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
    [Crossref] [PubMed]
  13. Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
    [Crossref] [PubMed]
  14. M. H. Lin, H. Y. Chen, and S. Gwo, “Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties,” J. Am. Chem. Soc. 132(32), 11259–11263 (2010).
    [Crossref] [PubMed]
  15. M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
    [Crossref]
  16. M. Chen, X. Liu, M. Zhao, and Y. Sun, “Early-stage evolution of the plasma over KTiOPO4 samples generated by high-intensity laser radiations,” Opt. Lett. 34(17), 2682–2684 (2009).
    [Crossref] [PubMed]
  17. M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
    [Crossref] [PubMed]
  18. H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
    [Crossref]
  19. G. W. Yang, “Laser ablation in liquid: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
    [Crossref]
  20. P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
    [Crossref] [PubMed]
  21. Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
    [Crossref]
  22. R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
    [Crossref] [PubMed]
  23. G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
    [Crossref] [PubMed]

2017 (1)

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

2016 (2)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
[Crossref] [PubMed]

2015 (1)

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

2014 (1)

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

2013 (3)

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

2012 (3)

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[Crossref]

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

2011 (1)

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

2010 (5)

M. H. Lin, H. Y. Chen, and S. Gwo, “Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties,” J. Am. Chem. Soc. 132(32), 11259–11263 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

2009 (2)

M. Chen, X. Liu, M. Zhao, and Y. Sun, “Early-stage evolution of the plasma over KTiOPO4 samples generated by high-intensity laser radiations,” Opt. Lett. 34(17), 2682–2684 (2009).
[Crossref] [PubMed]

M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
[Crossref] [PubMed]

2008 (2)

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

2007 (1)

G. W. Yang, “Laser ablation in liquid: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

2006 (1)

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

Alabastri, A.

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Alrasheed, S.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Bagga, K.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Bao, R. Q.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Boisen, A.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Brandi, F.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Cai, W. P.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Candeloro, P.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Cao, Y. L.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Caruso, A. N.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Chen, C.

M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
[Crossref] [PubMed]

Chen, H. Y.

M. H. Lin, H. Y. Chen, and S. Gwo, “Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties,” J. Am. Chem. Soc. 132(32), 11259–11263 (2010).
[Crossref] [PubMed]

Chen, M.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[Crossref]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
[Crossref] [PubMed]

M. Chen, X. Liu, M. Zhao, and Y. Sun, “Early-stage evolution of the plasma over KTiOPO4 samples generated by high-intensity laser radiations,” Opt. Lett. 34(17), 2682–2684 (2009).
[Crossref] [PubMed]

Chen, X. Y.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Chirumamilla, M.

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Chrisey, D. B.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Cingolani, R.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Coluccio, M. L.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Cuda, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Das, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Di Fabrizio, E.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Diaspro, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Dinu, C. Z.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Du, S.

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

Du, X. W.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Fang, J.

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

Fratalocchi, A.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Genovese, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Gentile, F.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Gongora, J. S. T.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Gopalakrishnan, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Gu, R.

Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
[Crossref] [PubMed]

Guo, L.

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Guo, Q.

Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
[Crossref] [PubMed]

Gwo, S.

M. H. Lin, H. Y. Chen, and S. Gwo, “Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties,” J. Am. Chem. Soc. 132(32), 11259–11263 (2010).
[Crossref] [PubMed]

Hahn, H.

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

He, J. P.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Hirata, A.

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Huang, Y.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Hübner, J.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Intartaglia, R.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Jeon, K. S.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Kappes, M.

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Kruk, R.

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

Kulinch, S. A.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Lang, X.

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Lebedkin, S.

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

Lee, J. Y.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Lee, S. J.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

Leoncini, M.

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, X. X.

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Li, Z.

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

Lim, D. K.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Limongi, T.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Lin, J.

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Lin, M. H.

M. H. Lin, H. Y. Chen, and S. Gwo, “Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties,” J. Am. Chem. Soc. 132(32), 11259–11263 (2010).
[Crossref] [PubMed]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, P.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Liu, X.

M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
[Crossref] [PubMed]

M. Chen, X. Liu, M. Zhao, and Y. Sun, “Early-stage evolution of the plasma over KTiOPO4 samples generated by high-intensity laser radiations,” Opt. Lett. 34(17), 2682–2684 (2009).
[Crossref] [PubMed]

Liu, X. D.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[Crossref]

Liu, Y. H.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[Crossref]

Liz-Marzán, L. M.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Man, B.

M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
[Crossref] [PubMed]

Morrill, A. R.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

Moskovits, M.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

Nam, J. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nicastri, A.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Pastoriza-Santos, I.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Pérez-Juste, J.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Perozziello, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Perri, A. M.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Polavarapu, L.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Povia, M.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Proietti Zaccaria, R.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Qadri, S. B.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Rodal-Cedeira, S.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Samal, A. K.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Schlücker, S.

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

Schmidt, M. S.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Shang, Y.

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Singh, S. C.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Suh, Y. D.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Sun, Y.

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Toma, A.

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Wang, C. X.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Wang, D. I. C.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Wang, X. T.

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Xie, J.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Xu, M.

Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
[Crossref] [PubMed]

Yan, Z. J.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Yang, G. W.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

G. W. Yang, “Laser ablation in liquid: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Yang, S. K.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yao, J.

Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
[Crossref] [PubMed]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yu, J.

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Yuan, Y.

Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
[Crossref] [PubMed]

Zaccaria, R. P.

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Zeng, H. B.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Zhang, Q.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhao, M.

M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
[Crossref] [PubMed]

M. Chen, X. Liu, M. Zhao, and Y. Sun, “Early-stage evolution of the plasma over KTiOPO4 samples generated by high-intensity laser radiations,” Opt. Lett. 34(17), 2682–2684 (2009).
[Crossref] [PubMed]

Zhao, M. W.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[Crossref]

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

ACS Nano (2)

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinch, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiaton in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Adv. Mater. (2)

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. Engl. 53(19), 4756–4795 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

M. H. Lin, H. Y. Chen, and S. Gwo, “Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties,” J. Am. Chem. Soc. 132(32), 11259–11263 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[Crossref]

J. Phys. Chem. C (1)

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Langmuir (2)

Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate,” Langmuir 32(18), 4530–4537 (2016).
[Crossref] [PubMed]

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Nano Lett. (3)

J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, and H. Hahn, “Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy,” Nano Lett. 10(12), 5006–5013 (2010).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of Carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15(9), 3075–3082 (2013).
[Crossref] [PubMed]

Phys. Rev. E (1)

M. Chen, X. Liu, M. Zhao, C. Chen, and B. Man, “Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals,” Phys. Rev. E 80(1), 016405 (2009).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquid: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Sci. Adv. (1)

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R. P. Zaccaria, A. Alabastri, M. Leoncini, and E. Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states,” Sci. Rep. 3, 1792 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic plot of Au flat films on Si substrate. (b) The SEM morphology of the as-prepared Au flat films, and the inset shows the depth of Au films by step profile method.
Fig. 2
Fig. 2 (a) The schematic plot of modification of Au films by pulsed laser irradiation with power of ~8GW/cm2. (b-c) The representative low-magnification and enlarged SEM images of the generated Au nanoporous films by five pulses laser irradiation. The insets show the result of the EDS, the depth and diameter of sidewall and pore, respectively. (d) XRD patterns of the obtained nanoporous and the original Au films.
Fig. 3
Fig. 3 (a-b) The typical SEM images of the modified Au films by laser irradiation with laser powers of 5GW/cm2 and 12 GW/cm2, respectively. (c) The SEM image of the irradiated Au films by ten pulses laser irradiation with laser power of ~8 GW/cm2.
Fig. 4
Fig. 4 (a) The SERS spectra of 4-ATP(1M), 4-ATP(10−5 M) on original Au flat films and 4-ATP(10−9M) on Au nanoporous films, respectively. (b) The variations of SERS intensities at 484.8, 1090.2 and 1591.6 cm−1 versus different substrates used in this paper. (c) The recycling tests of SERS performances using obtained Au nanoporous films as substrate. (d) The variations of the SERS intensity at 1591.6 cm−1 within 300 cycles repeated applications. Inset shows the SEM image of the Au nanoporous films after 300 cycles of SERS measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF=(ISERS/NSERS)/(IBULK/NBULK)

Metrics