Abstract

Graphene oxide (GO)-TiO2 nanotubes (TNTs) were synthesized by one-step anodization. An as-prepared photocatalyst was characterized by FE-SEM, XRD, AES, PL, and UV-Vis DRS. To determine the effect of synthesis conditions on organics degradation, we prepared the catalyst with different GO concentrations, anodization voltages, and times. Optimum synthesis conditions were GO concentration 0.25 g L−1 and anodization at 48 V for 2 h. Compared with TNTs, GO-TNTs showed a 3.6-fold increase in photocatalytic efficiency under visible light. Recycling was performed to investigate the stability of a GO-TNT catalyst. GO-TNTs is favorable for the separation of charges (e-/h+), promotion of the formation of OH, h+, and superoxides, which degrade organics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO)

M. Q. Wen, T. Xiong, Z. G. Zang, W. Wei, X. S. Tang, and F. Dong
Opt. Express 24(10) 10205-10212 (2016)

Fabrication of plasmonic Au/TiO2 nanofiber films with enhanced photocatalytic activities

Hua Li, Enzhou Liu, Jun Fan, Xiaoyun Hu, Jun Wan, Lin Sun, and Yang Hu
Appl. Opt. 55(2) 221-227 (2016)

Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction

Hung Ji Huang, Shi-Yuan Zhen, Ping-Yu Li, Shien-Der Tzeng, and Hai-Pang Chiang
Opt. Express 24(14) 15603-15608 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).
  2. E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environ. Int. 30(7), 953–971 (2004).
    [Crossref] [PubMed]
  3. Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
    [Crossref]
  4. P. Nuengmatcha, S. Chanthai, R. Mahachai, and W.-C. Oh, “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation,” Dyes Pigments 134, 487–497 (2016).
    [Crossref]
  5. S. Sathian, M. Rajasimman, C. Rathnasabapathy, and C. Karthikeyan, “Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes,” J. Water Process Eng. 4, 82–90 (2014).
    [Crossref]
  6. W.-Y. Choi, Y.-W. Lee, and J.-O. Kim, “Factors affecting preparation of photocatalytic TiO2 metal membrane with reactive nano-structured tubes,” Desalin. Water Treat. 34(1-3), 229–233 (2011).
    [Crossref]
  7. B. Wang, H. Qi, H. Wang, Y. Cui, J. Zhao, J. Guo, Y. Cui, Y. Liu, K. Yi, and J. Shao, “Morphology, structure and optical properties in TiO2 nanostructured films annealed at various temperatures,” Opt. Mater. Express 5(6), 1410–1418 (2015).
    [Crossref]
  8. M. S. Park, S.-J. Lee, S.-J. Sung, and D.-H. Kim, “Double-layered TiO2 photoelectrode with particulate structure prepared by one-step soaking method,” Opt. Mater. Express 4(11), 2401–2408 (2014).
    [Crossref]
  9. D. He, Y. Hu, J. Tao, X. Zheng, H. Liu, G. Jing, H. Lu, H. Guan, J. Yu, J. Zhang, J. Tang, Y. Luo, and Z. Chen, “Micro fiber with cladding of titanium dioxide (TiO2) nanoparticles and its violet light sensing,” Opt. Mater. Express 7(1), 264–272 (2017).
    [Crossref]
  10. S. Karlsson, L. G. Bäck, P. Kidkhunthod, K. Lundstedt, and L. Wondraczek, “Effect of TiO2 on optical properties of glasses in the soda-lime-silicate system,” Opt. Mater. Express 6(4), 1198–1216 (2016).
    [Crossref]
  11. A. Zielińska-Jurek and J. Hupka, “Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation,” Catal. Today 230, 181–187 (2014).
    [Crossref]
  12. S.-P. Kim and J.-O. Kim, “Fabrication, characterization and photocatalytic performance of Fe-doped TiO2 nanotube composite for efficient degradation of water pollutants,” Desalin. Water Treat., 1–7 (2015).
  13. Y. Niu, M. Xing, J. Zhang, and B. Tian, “Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol,” Catal. Today 201, 159–166 (2013).
    [Crossref]
  14. S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
    [Crossref]
  15. M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
    [Crossref] [PubMed]
  16. N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
    [Crossref] [PubMed]
  17. Q. Quan, X. Lin, N. Zhang, and Y.-J. Xu, “Graphene and its derivatives as versatile templates for materials synthesis and functional applications,” Nanoscale 9(7), 2398–2416 (2017).
    [Crossref] [PubMed]
  18. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  19. Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
    [Crossref] [PubMed]
  20. Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4(12), 7303–7314 (2010).
    [Crossref] [PubMed]
  21. M.-Q. Yang, C. Han, N. Zhang, and Y.-J. Xu, “Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites,” Nanoscale 7(43), 18062–18070 (2015).
    [Crossref] [PubMed]
  22. W.-Y. Choi, J. Chung, C.-H. Cho, and J.-O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO 2 metal membrane,” Desalination 279(1-3), 359–366 (2011).
    [Crossref]
  23. S. Zhu, X. Liu, J. Lin, and X. Chen, “Low temperature transferring of anodized TiO2 nanotube-array onto a flexible substrate for dye-sensitized solar cells,” Opt. Mater. Express 5(12), 2754–2760 (2015).
    [Crossref]
  24. P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
    [Crossref] [PubMed]
  25. C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
    [Crossref] [PubMed]
  26. F. Gobal and M. Faraji, “Electrochemical synthesis of reduced graphene oxide/ TiO2 nanotubes/Ti for high-performance supercapacitors,” Ionics 21(2), 525–531 (2015).
    [Crossref]
  27. N. Lingappan, Y.-S. Gal, and K. T. Lim, “Synthesis of reduced graphene oxide/polypyrrole conductive composites,” Mol. Cryst. Liquid Cryst. 585(1), 60–66 (2013).
    [Crossref]
  28. S. El-Kacemi, H. Zazou, N. Oturan, M. Dietze, M. Hamdani, M. Es-Souni, and M. A. Oturan, “Nanostructured ZnO-TiO2 thin film oxide as anode material in electrooxidation of organic pollutants. Application to the removal of dye Amido black 10B from water,” Environ. Sci. Pollut. Res. 24, 1–8 (2016).
  29. G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
    [Crossref]
  30. Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
    [Crossref]
  31. F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
    [Crossref]
  32. H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).
  33. V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
    [Crossref]
  34. K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
    [Crossref]
  35. N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
    [Crossref]
  36. N. Raghavan, S. Thangavel, and G. Venugopal, “Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites,” Mater. Sci. Semicond. Process. 30, 321–329 (2015).
    [Crossref]

2017 (2)

2016 (3)

S. Karlsson, L. G. Bäck, P. Kidkhunthod, K. Lundstedt, and L. Wondraczek, “Effect of TiO2 on optical properties of glasses in the soda-lime-silicate system,” Opt. Mater. Express 6(4), 1198–1216 (2016).
[Crossref]

P. Nuengmatcha, S. Chanthai, R. Mahachai, and W.-C. Oh, “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation,” Dyes Pigments 134, 487–497 (2016).
[Crossref]

V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
[Crossref]

2015 (9)

N. Raghavan, S. Thangavel, and G. Venugopal, “Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites,” Mater. Sci. Semicond. Process. 30, 321–329 (2015).
[Crossref]

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).

M.-Q. Yang, C. Han, N. Zhang, and Y.-J. Xu, “Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites,” Nanoscale 7(43), 18062–18070 (2015).
[Crossref] [PubMed]

S. Zhu, X. Liu, J. Lin, and X. Chen, “Low temperature transferring of anodized TiO2 nanotube-array onto a flexible substrate for dye-sensitized solar cells,” Opt. Mater. Express 5(12), 2754–2760 (2015).
[Crossref]

N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
[Crossref] [PubMed]

F. Gobal and M. Faraji, “Electrochemical synthesis of reduced graphene oxide/ TiO2 nanotubes/Ti for high-performance supercapacitors,” Ionics 21(2), 525–531 (2015).
[Crossref]

B. Wang, H. Qi, H. Wang, Y. Cui, J. Zhao, J. Guo, Y. Cui, Y. Liu, K. Yi, and J. Shao, “Morphology, structure and optical properties in TiO2 nanostructured films annealed at various temperatures,” Opt. Mater. Express 5(6), 1410–1418 (2015).
[Crossref]

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

2014 (5)

M. S. Park, S.-J. Lee, S.-J. Sung, and D.-H. Kim, “Double-layered TiO2 photoelectrode with particulate structure prepared by one-step soaking method,” Opt. Mater. Express 4(11), 2401–2408 (2014).
[Crossref]

S. Sathian, M. Rajasimman, C. Rathnasabapathy, and C. Karthikeyan, “Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes,” J. Water Process Eng. 4, 82–90 (2014).
[Crossref]

A. Zielińska-Jurek and J. Hupka, “Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation,” Catal. Today 230, 181–187 (2014).
[Crossref]

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

2013 (4)

N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
[Crossref]

N. Lingappan, Y.-S. Gal, and K. T. Lim, “Synthesis of reduced graphene oxide/polypyrrole conductive composites,” Mol. Cryst. Liquid Cryst. 585(1), 60–66 (2013).
[Crossref]

Y. Niu, M. Xing, J. Zhang, and B. Tian, “Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol,” Catal. Today 201, 159–166 (2013).
[Crossref]

M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

2012 (2)

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

2011 (4)

W.-Y. Choi, J. Chung, C.-H. Cho, and J.-O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO 2 metal membrane,” Desalination 279(1-3), 359–366 (2011).
[Crossref]

K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
[Crossref]

W.-Y. Choi, Y.-W. Lee, and J.-O. Kim, “Factors affecting preparation of photocatalytic TiO2 metal membrane with reactive nano-structured tubes,” Desalin. Water Treat. 34(1-3), 229–233 (2011).
[Crossref]

M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).

2010 (1)

Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4(12), 7303–7314 (2010).
[Crossref] [PubMed]

2008 (1)

S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

2004 (1)

E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environ. Int. 30(7), 953–971 (2004).
[Crossref] [PubMed]

Ahmadian, M.

M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).

Ahmed, E.

N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
[Crossref]

Ahmed, M.

N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
[Crossref]

Annavaram, V.

V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
[Crossref]

Bäck, L. G.

Blya, N. I. S. A.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Bobbala, P.

V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
[Crossref]

Chanthai, S.

P. Nuengmatcha, S. Chanthai, R. Mahachai, and W.-C. Oh, “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation,” Dyes Pigments 134, 487–497 (2016).
[Crossref]

Chen, J.

H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).

Chen, X.

Chen, Y.

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

Chen, Z.

Chin, J. W.

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

Chiu, W. S.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Cho, C.-H.

W.-Y. Choi, J. Chung, C.-H. Cho, and J.-O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO 2 metal membrane,” Desalination 279(1-3), 359–366 (2011).
[Crossref]

Choi, W.-Y.

W.-Y. Choi, Y.-W. Lee, and J.-O. Kim, “Factors affecting preparation of photocatalytic TiO2 metal membrane with reactive nano-structured tubes,” Desalin. Water Treat. 34(1-3), 229–233 (2011).
[Crossref]

W.-Y. Choi, J. Chung, C.-H. Cho, and J.-O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO 2 metal membrane,” Desalination 279(1-3), 359–366 (2011).
[Crossref]

Chung, J.

W.-Y. Choi, J. Chung, C.-H. Cho, and J.-O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO 2 metal membrane,” Desalination 279(1-3), 359–366 (2011).
[Crossref]

Cserháti, T.

E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environ. Int. 30(7), 953–971 (2004).
[Crossref] [PubMed]

Cui, X.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Cui, Y.

Ding, A.

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

Dong, L.

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

Dong, X.

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

Du, Y.

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Duo, F.

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

Ehrampoosh, M.

M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).

Fan, C.

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

Faraji, M.

F. Gobal and M. Faraji, “Electrochemical synthesis of reduced graphene oxide/ TiO2 nanotubes/Ti for high-performance supercapacitors,” Ionics 21(2), 525–531 (2015).
[Crossref]

Forgacs, E.

E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environ. Int. 30(7), 953–971 (2004).
[Crossref] [PubMed]

Fu, X.

Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4(12), 7303–7314 (2010).
[Crossref] [PubMed]

Gal, Y.-S.

N. Lingappan, Y.-S. Gal, and K. T. Lim, “Synthesis of reduced graphene oxide/polypyrrole conductive composites,” Mol. Cryst. Liquid Cryst. 585(1), 60–66 (2013).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Ghaneian, M.

M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).

Gobal, F.

F. Gobal and M. Faraji, “Electrochemical synthesis of reduced graphene oxide/ TiO2 nanotubes/Ti for high-performance supercapacitors,” Ionics 21(2), 525–531 (2015).
[Crossref]

Gong, Y.

S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
[Crossref]

Guan, H.

Guo, J.

Han, C.

M.-Q. Yang, C. Han, N. Zhang, and Y.-J. Xu, “Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites,” Nanoscale 7(43), 18062–18070 (2015).
[Crossref] [PubMed]

He, D.

Hong, Z.

N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
[Crossref]

Hu, Y.

Huang, N. M.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Hupka, J.

A. Zielińska-Jurek and J. Hupka, “Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation,” Catal. Today 230, 181–187 (2014).
[Crossref]

Jaroniec, M.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Jiang, X.

K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
[Crossref]

Jing, G.

Karlsson, S.

Karthikeyan, C.

S. Sathian, M. Rajasimman, C. Rathnasabapathy, and C. Karthikeyan, “Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes,” J. Water Process Eng. 4, 82–90 (2014).
[Crossref]

Khalid, N.

N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
[Crossref]

Kidkhunthod, P.

Kim, D.-H.

Kim, J.-O.

W.-Y. Choi, Y.-W. Lee, and J.-O. Kim, “Factors affecting preparation of photocatalytic TiO2 metal membrane with reactive nano-structured tubes,” Desalin. Water Treat. 34(1-3), 229–233 (2011).
[Crossref]

W.-Y. Choi, J. Chung, C.-H. Cho, and J.-O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO 2 metal membrane,” Desalination 279(1-3), 359–366 (2011).
[Crossref]

Koduru, J. R.

V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
[Crossref]

Lai, Y.

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

Lee, S.-J.

Lee, Y.-W.

W.-Y. Choi, Y.-W. Lee, and J.-O. Kim, “Factors affecting preparation of photocatalytic TiO2 metal membrane with reactive nano-structured tubes,” Desalin. Water Treat. 34(1-3), 229–233 (2011).
[Crossref]

Lei, L.

H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).

Li, C.

K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
[Crossref]

Li, H.

H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).

Li, S.

S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
[Crossref]

Lim, H. N.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Lim, K. T.

N. Lingappan, Y.-S. Gal, and K. T. Lim, “Synthesis of reduced graphene oxide/polypyrrole conductive composites,” Mol. Cryst. Liquid Cryst. 585(1), 60–66 (2013).
[Crossref]

Lin, C.

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

Lin, J.

Lin, X.

Q. Quan, X. Lin, N. Zhang, and Y.-J. Xu, “Graphene and its derivatives as versatile templates for materials synthesis and functional applications,” Nanoscale 9(7), 2398–2416 (2017).
[Crossref] [PubMed]

Lin, Y.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Lingappan, N.

N. Lingappan, Y.-S. Gal, and K. T. Lim, “Synthesis of reduced graphene oxide/polypyrrole conductive composites,” Mol. Cryst. Liquid Cryst. 585(1), 60–66 (2013).
[Crossref]

Liu, H.

Liu, J.

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

Liu, S.

N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
[Crossref] [PubMed]

Liu, X.

Liu, Y.

Lu, H.

Lu, Y.

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Lundstedt, K.

Luo, Y.

Ma, Z.

S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
[Crossref]

Mahachai, R.

P. Nuengmatcha, S. Chanthai, R. Mahachai, and W.-C. Oh, “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation,” Dyes Pigments 134, 487–497 (2016).
[Crossref]

Mao, X.

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

Moussavi, G.

M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).

Niu, Y.

Y. Niu, M. Xing, J. Zhang, and B. Tian, “Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol,” Catal. Today 201, 159–166 (2013).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nuengmatcha, P.

P. Nuengmatcha, S. Chanthai, R. Mahachai, and W.-C. Oh, “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation,” Dyes Pigments 134, 487–497 (2016).
[Crossref]

Oh, W.-C.

P. Nuengmatcha, S. Chanthai, R. Mahachai, and W.-C. Oh, “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation,” Dyes Pigments 134, 487–497 (2016).
[Crossref]

Omar, F. S.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Oros, G.

E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environ. Int. 30(7), 953–971 (2004).
[Crossref] [PubMed]

Park, M. S.

Posa, V. R.

V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
[Crossref]

Qi, H.

Quan, Q.

Q. Quan, X. Lin, N. Zhang, and Y.-J. Xu, “Graphene and its derivatives as versatile templates for materials synthesis and functional applications,” Nanoscale 9(7), 2398–2416 (2017).
[Crossref] [PubMed]

Raghavan, N.

N. Raghavan, S. Thangavel, and G. Venugopal, “Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites,” Mater. Sci. Semicond. Process. 30, 321–329 (2015).
[Crossref]

Rahimi, S.

M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).

Rajasimman, M.

S. Sathian, M. Rajasimman, C. Rathnasabapathy, and C. Karthikeyan, “Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes,” J. Water Process Eng. 4, 82–90 (2014).
[Crossref]

Rathnasabapathy, C.

S. Sathian, M. Rajasimman, C. Rathnasabapathy, and C. Karthikeyan, “Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes,” J. Water Process Eng. 4, 82–90 (2014).
[Crossref]

Ren, F.

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Sana, L.

N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
[Crossref]

Sathian, S.

S. Sathian, M. Rajasimman, C. Rathnasabapathy, and C. Karthikeyan, “Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes,” J. Water Process Eng. 4, 82–90 (2014).
[Crossref]

Shao, J.

Sheini, F.-J.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Somala, A. R.

V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
[Crossref]

Song, P.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Sun, L.

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

Sun, M.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Sun, Y.

N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
[Crossref] [PubMed]

Sung, S.-J.

Tang, J.

Tang, Y.

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

Tang, Z.-R.

Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4(12), 7303–7314 (2010).
[Crossref] [PubMed]

Tao, J.

Thangavel, S.

N. Raghavan, S. Thangavel, and G. Venugopal, “Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites,” Mater. Sci. Semicond. Process. 30, 321–329 (2015).
[Crossref]

Thien, G. S.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Tian, B.

Y. Niu, M. Xing, J. Zhang, and B. Tian, “Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol,” Catal. Today 201, 159–166 (2013).
[Crossref]

Venugopal, G.

N. Raghavan, S. Thangavel, and G. Venugopal, “Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites,” Mater. Sci. Semicond. Process. 30, 321–329 (2015).
[Crossref]

Wang, B.

Wang, C.

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Wang, H.

Wang, Y.

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

Wei, Y.

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

Wondraczek, L.

Wu, Y.

S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
[Crossref]

Xia, Z.

H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).

Xiang, Q.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Xing, J.

H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).

Xing, M.

Y. Niu, M. Xing, J. Zhang, and B. Tian, “Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol,” Catal. Today 201, 159–166 (2013).
[Crossref]

Xu, Y.-J.

Q. Quan, X. Lin, N. Zhang, and Y.-J. Xu, “Graphene and its derivatives as versatile templates for materials synthesis and functional applications,” Nanoscale 9(7), 2398–2416 (2017).
[Crossref] [PubMed]

N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
[Crossref] [PubMed]

M.-Q. Yang, C. Han, N. Zhang, and Y.-J. Xu, “Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites,” Nanoscale 7(43), 18062–18070 (2015).
[Crossref] [PubMed]

M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4(12), 7303–7314 (2010).
[Crossref] [PubMed]

Yang, M.-Q.

M.-Q. Yang, C. Han, N. Zhang, and Y.-J. Xu, “Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites,” Nanoscale 7(43), 18062–18070 (2015).
[Crossref] [PubMed]

N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
[Crossref] [PubMed]

M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

Yang, P.

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Yang, X.

K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
[Crossref]

Yi, K.

Yousefi, R.

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Yu, F.

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

Yu, J.

Zhai, C.

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Zhang, J.

D. He, Y. Hu, J. Tao, X. Zheng, H. Liu, G. Jing, H. Lu, H. Guan, J. Yu, J. Zhang, J. Tang, Y. Luo, and Z. Chen, “Micro fiber with cladding of titanium dioxide (TiO2) nanoparticles and its violet light sensing,” Opt. Mater. Express 7(1), 264–272 (2017).
[Crossref]

Y. Niu, M. Xing, J. Zhang, and B. Tian, “Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol,” Catal. Today 201, 159–166 (2013).
[Crossref]

S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
[Crossref]

Zhang, N.

Q. Quan, X. Lin, N. Zhang, and Y.-J. Xu, “Graphene and its derivatives as versatile templates for materials synthesis and functional applications,” Nanoscale 9(7), 2398–2416 (2017).
[Crossref] [PubMed]

N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
[Crossref] [PubMed]

M.-Q. Yang, C. Han, N. Zhang, and Y.-J. Xu, “Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites,” Nanoscale 7(43), 18062–18070 (2015).
[Crossref] [PubMed]

M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

Zhang, X.

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4(12), 7303–7314 (2010).
[Crossref] [PubMed]

Zhao, J.

Zheng, X.

Zhou, K.

K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
[Crossref]

Zhu, M.

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Zhu, S.

Zhu, Y.

K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
[Crossref]

Zhuang, H.

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

Zielinska-Jurek, A.

A. Zielińska-Jurek and J. Hupka, “Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation,” Catal. Today 230, 181–187 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study,” ACS Appl. Mater. Interfaces 5(3), 1156–1164 (2013).
[Crossref] [PubMed]

ACS Nano (1)

Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4(12), 7303–7314 (2010).
[Crossref] [PubMed]

Appl. Catal. B (1)

H. Li, Z. Xia, J. Chen, L. Lei, and J. Xing, “Constructing ternary CdS/reduced graphene oxide/ TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity,” Appl. Catal. B 168, 105–113 (2015).

Catal. Today (3)

A. Zielińska-Jurek and J. Hupka, “Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation,” Catal. Today 230, 181–187 (2014).
[Crossref]

Y. Niu, M. Xing, J. Zhang, and B. Tian, “Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol,” Catal. Today 201, 159–166 (2013).
[Crossref]

S. Li, Z. Ma, J. Zhang, Y. Wu, and Y. Gong, “A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides,” Catal. Today 139(1-2), 109–112 (2008).
[Crossref]

Chem. Rev. (1)

N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu, “Waltzing with the versatile platform of graphene to synthesize composite photocatalysts,” Chem. Rev. 115(18), 10307–10377 (2015).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

Y. Wei, A. Ding, L. Dong, Y. Tang, F. Yu, and X. Dong, “Characterisation and coagulation performance of an inorganic coagulant—poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater,” Colloids Surf. A Physicochem. Eng. Asp. 470, 137–141 (2015).
[Crossref]

Curr. Appl. Phys. (1)

N. Khalid, E. Ahmed, Z. Hong, L. Sana, and M. Ahmed, “Enhanced photocatalytic activity of graphene– TiO2 composite under visible light irradiation,” Curr. Appl. Phys. 13(4), 659–663 (2013).
[Crossref]

Desalin. Water Treat. (1)

W.-Y. Choi, Y.-W. Lee, and J.-O. Kim, “Factors affecting preparation of photocatalytic TiO2 metal membrane with reactive nano-structured tubes,” Desalin. Water Treat. 34(1-3), 229–233 (2011).
[Crossref]

Desalination (1)

W.-Y. Choi, J. Chung, C.-H. Cho, and J.-O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO 2 metal membrane,” Desalination 279(1-3), 359–366 (2011).
[Crossref]

Dyes Pigments (1)

P. Nuengmatcha, S. Chanthai, R. Mahachai, and W.-C. Oh, “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation,” Dyes Pigments 134, 487–497 (2016).
[Crossref]

Environ. Int. (1)

E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environ. Int. 30(7), 953–971 (2004).
[Crossref] [PubMed]

Int. J. Photoenergy (1)

G. S. Thien, F. S. Omar, N. I. S. A. Blya, W. S. Chiu, H. N. Lim, R. Yousefi, F.-J. Sheini, and N. M. Huang, “Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response,” Int. J. Photoenergy 2014, 1–9 (2014).
[Crossref]

Ionics (1)

F. Gobal and M. Faraji, “Electrochemical synthesis of reduced graphene oxide/ TiO2 nanotubes/Ti for high-performance supercapacitors,” Ionics 21(2), 525–531 (2015).
[Crossref]

J. Electrochem. Soc. (1)

Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc. 153(7), D123–D127 (2006).
[Crossref]

J. Environ. Health Sci. Eng. (1)

M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, and M. Ahmadian, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process,” J. Environ. Health Sci. Eng. 8, 34–40 (2011).

J. Exp. Nanosci. (1)

V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, and A. R. Somala, “Preparation of graphene– TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation,” J. Exp. Nanosci. 11(9), 722–736 (2016).
[Crossref]

J. Water Process Eng. (1)

S. Sathian, M. Rajasimman, C. Rathnasabapathy, and C. Karthikeyan, “Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes,” J. Water Process Eng. 4, 82–90 (2014).
[Crossref]

Mater. Charact. (1)

F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, and J. Liu, “Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity,” Mater. Charact. 99, 8–16 (2015).
[Crossref]

Mater. Sci. Semicond. Process. (1)

N. Raghavan, S. Thangavel, and G. Venugopal, “Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites,” Mater. Sci. Semicond. Process. 30, 321–329 (2015).
[Crossref]

Mol. Cryst. Liquid Cryst. (1)

N. Lingappan, Y.-S. Gal, and K. T. Lim, “Synthesis of reduced graphene oxide/polypyrrole conductive composites,” Mol. Cryst. Liquid Cryst. 585(1), 60–66 (2013).
[Crossref]

Nanoscale (3)

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

M.-Q. Yang, C. Han, N. Zhang, and Y.-J. Xu, “Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites,” Nanoscale 7(43), 18062–18070 (2015).
[Crossref] [PubMed]

Q. Quan, X. Lin, N. Zhang, and Y.-J. Xu, “Graphene and its derivatives as versatile templates for materials synthesis and functional applications,” Nanoscale 9(7), 2398–2416 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

New J. Chem. (1)

K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, “Preparation of graphene– TiO2 composites with enhanced photocatalytic activity,” New J. Chem. 35(2), 353–359 (2011).
[Crossref]

Opt. Mater. Express (5)

Phys. Chem. Chem. Phys. (1)

C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, and P. Yang, “Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation,” Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014).
[Crossref] [PubMed]

Other (2)

S. El-Kacemi, H. Zazou, N. Oturan, M. Dietze, M. Hamdani, M. Es-Souni, and M. A. Oturan, “Nanostructured ZnO-TiO2 thin film oxide as anode material in electrooxidation of organic pollutants. Application to the removal of dye Amido black 10B from water,” Environ. Sci. Pollut. Res. 24, 1–8 (2016).

S.-P. Kim and J.-O. Kim, “Fabrication, characterization and photocatalytic performance of Fe-doped TiO2 nanotube composite for efficient degradation of water pollutants,” Desalin. Water Treat., 1–7 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 FE-SEM images of: (a) TNTs, (b) cross view, and (c) GO-TNTs, (d) XRD patterns of TNTs and GO-TNTs.
Fig. 2
Fig. 2 AES analysis results of GO-TNTs: (a) carbon, (b) oxygen, (c) Ti, and (d) atomic composition.
Fig. 3
Fig. 3 TNT and GO-TNT one-step and two-step catalysts: (a) PL spectra and (b) UV-Vis DRS.
Fig. 4
Fig. 4 Effect of GO concentration on MB degradation under visible light at a fixed anodization time of 2 h and an anodization voltage of 48 V: (a) C/Co and (b) Ln(C/Co).
Fig. 5
Fig. 5 Effect of anodization time on MB degradation under visible light at a fixed GO concentration of 0.25 g L−1 and an anodization voltage of 48 V: (a) C/Co and (b) Ln(C/Co).
Fig. 6
Fig. 6 Effect of anodization voltage on MB degradation under visible light at a fixed GO concentration of 0.25 g L−1 and an anodization time of 2 h: (a) C/Co and (b) Ln(C/Co).
Fig. 7
Fig. 7 Photocatalytic degradation of MB dye under visible light irradiation by TNTs and GO-TNTs one-step and two-step: (a) C/Co and (b) Ln(C/Co).
Fig. 8
Fig. 8 Reusability investigation of GO-TNT catalyst under visible light.
Fig. 9
Fig. 9 Photocatalysis mechanism of GO-modified TiO2.

Tables (2)

Tables Icon

Table 1 Synthesis conditions of the one-step GO-TNTs catalyst with different GO concentrations, anodization voltages, and anodization times.

Tables Icon

Table 2 Reaction rate constant values (k) and associated R2 values for TNTs and GO-TNTs.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E g = hc λ
Ln C C 0 =kt
GO/Ti O 2 +hv e + h +
H O 2 + h + O H + H +
O H + h + O H
O 2 + e O 2
O H +organicsdeg raded products
O 2 +organicsdeg raded products
h + +organicsdeg raded products

Metrics