Abstract

Towards building large-scale integrated photonic systems for quantum information processing, spatial and spectral alignment of single quantum systems to photonic nanocavities is required. Here, we demonstrate spatially targeted implantation of nitrogen vacancy (NV) centers into the mode maximum of 2-d diamond photonic crystal cavities with quality factors up to 8000, achieving an average of 1.1 ± 0.2 NVs per cavity. Nearly all NV-cavity systems have significant emission intensity enhancement, reaching a cavity-fed spectrally selective intensity enhancement, Fint, of up to 93. Although spatial NV-cavity overlap is nearly guaranteed within about 40 nm, spectral tuning of the NV’s zero-phonon-line (ZPL) is still necessary after fabrication. To demonstrate spectral control, we temperature tune a cavity into an NV ZPL, yielding FintZPL~5 at cryogenic temperatures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum nanophotonics in diamond [Invited]

Tim Schröder, Sara L. Mouradian, Jiabao Zheng, Matthew E. Trusheim, Michael Walsh, Edward H. Chen, Luozhou Li, Igal Bayn, and Dirk Englund
J. Opt. Soc. Am. B 33(4) B65-B83 (2016)

Coupling of silicon-vacancy centers to a single crystal diamond cavity

Jonathan C. Lee, Igor Aharonovich, Andrew P. Magyar, Fabian Rol, and Evelyn L. Hu
Opt. Express 20(8) 8891-8897 (2012)

Waveguide-integrated single-crystalline GaP resonators on diamond

Nicole Thomas, Russell J. Barbour, Yuncheng Song, Minjoo Larry Lee, and Kai-Mei C. Fu
Opt. Express 22(11) 13555-13564 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  2. L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
    [Crossref]
  3. K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
    [Crossref]
  4. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref] [PubMed]
  5. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
    [Crossref]
  6. K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
    [Crossref]
  7. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
    [Crossref] [PubMed]
  8. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
    [Crossref] [PubMed]
  9. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
    [Crossref]
  10. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
    [Crossref]
  11. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
    [Crossref] [PubMed]
  12. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
    [Crossref] [PubMed]
  13. L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
    [Crossref] [PubMed]
  14. M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
    [Crossref]
  15. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
    [Crossref] [PubMed]
  16. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [Crossref]
  17. J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
    [Crossref]
  18. T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.
  19. T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.
  20. M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
    [Crossref]
  21. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
    [Crossref] [PubMed]
  22. I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.
  23. M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
    [Crossref]
  24. S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
    [Crossref]
  25. I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
    [Crossref] [PubMed]
  26. T. Greibe, T. A. Anhøj, L. S. Johansen, and A. Han, “Quality control of JEOL JBX-9500fsz e-beam lithography system in a multi-user laboratory,” Microelectron. Eng. 155, 25–28 (2016).
    [Crossref]
  27. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556 (2006).
    [Crossref] [PubMed]
  28. J. Riedrich-Möller, E. Neu, and C. Becher, “Design of microcavities in diamond-based photonic crystals by Fourier-and real-space analysis of cavity fields,” Photonics and Nanostructures - Fundamentals and Applications 8, 150–162 (2010).
    [Crossref]
  29. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  30. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [Crossref] [PubMed]
  31. T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
    [Crossref]
  32. L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
    [Crossref] [PubMed]
  33. S. L. Lai, D. Johnson, and R. Westerman, “Aspect ratio dependent etching lag reduction in deep silicon etch processes,” Journal of Vacuum Science & Technology A 24, 1283–1288 (2006).
    [Crossref]
  34. H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
    [Crossref]
  35. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods. Phys. Res. B 268, 1818–1823 (2010).
    [Crossref]
  36. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref] [PubMed]
  37. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Physical Review 69, 681 (1946).
  38. H.-Q. Zhao, M. Fujiwara, and S. Takeuchi, “Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect,” Opt. Express 20, 15628 (2012).
    [Crossref] [PubMed]
  39. A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. V. d. Walle, “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres,” New J. Phys. 16, 073026 (2014).
    [Crossref]
  40. C. Santori, D. Fattal, and Y. Yamamoto, Single-photon Devices and Applications (John Wiley & Sons, 2010).
  41. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
    [Crossref] [PubMed]
  42. H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).
  43. R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
    [Crossref]
  44. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
    [Crossref]
  45. D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
    [Crossref] [PubMed]
  46. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express 18, 22232–22244 (2010).
    [Crossref] [PubMed]
  47. S. L. Mouradian and D. Englund, “A Tunable Waveguide-Coupled Cavity Design for Efficient Spin-Photon Interfaces in Photonic Integrated Circuits,” arXiv:1610.08950 [physics, physics:quant-ph] (2016).
  48. S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
    [Crossref]

2016 (5)

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

T. Greibe, T. A. Anhøj, L. S. Johansen, and A. Han, “Quality control of JEOL JBX-9500fsz e-beam lithography system in a multi-user laboratory,” Microelectron. Eng. 155, 25–28 (2016).
[Crossref]

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
[Crossref] [PubMed]

2015 (6)

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

2014 (6)

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. V. d. Walle, “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres,” New J. Phys. 16, 073026 (2014).
[Crossref]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

2013 (4)

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

2012 (3)

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

H.-Q. Zhao, M. Fujiwara, and S. Takeuchi, “Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect,” Opt. Express 20, 15628 (2012).
[Crossref] [PubMed]

2011 (1)

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
[Crossref]

2010 (7)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods. Phys. Res. B 268, 1818–1823 (2010).
[Crossref]

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
[Crossref] [PubMed]

J. Riedrich-Möller, E. Neu, and C. Becher, “Design of microcavities in diamond-based photonic crystals by Fourier-and real-space analysis of cavity fields,” Photonics and Nanostructures - Fundamentals and Applications 8, 150–162 (2010).
[Crossref]

X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express 18, 22232–22244 (2010).
[Crossref] [PubMed]

2009 (1)

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[Crossref]

2006 (2)

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556 (2006).
[Crossref] [PubMed]

S. L. Lai, D. Johnson, and R. Westerman, “Aspect ratio dependent etching lag reduction in deep silicon etch processes,” Journal of Vacuum Science & Technology A 24, 1283–1288 (2006).
[Crossref]

2005 (2)

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

1997 (1)

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Physical Review 69, 681 (1946).

Abellán, C.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Albrecht, R.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Alkauskas, A.

A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. V. d. Walle, “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres,” New J. Phys. 16, 073026 (2014).
[Crossref]

Amaya, W.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Anhøj, T. A.

T. Greibe, T. A. Anhøj, L. S. Johansen, and A. Han, “Quality control of JEOL JBX-9500fsz e-beam lithography system in a multi-user laboratory,” Microelectron. Eng. 155, 25–28 (2016).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Awschalom, D. D.

A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. V. d. Walle, “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres,” New J. Phys. 16, 073026 (2014).
[Crossref]

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
[Crossref] [PubMed]

Bakhru, H.

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
[Crossref]

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Baur, A.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Bayn, I.

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
[Crossref]

Becher, C.

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

J. Riedrich-Möller, E. Neu, and C. Becher, “Design of microcavities in diamond-based photonic crystals by Fourier-and real-space analysis of cavity fields,” Photonics and Nanostructures - Fundamentals and Applications 8, 150–162 (2010).
[Crossref]

Benson, O.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[Crossref]

Bernien, H.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Biersack, J. P.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods. Phys. Res. B 268, 1818–1823 (2010).
[Crossref]

Blok, M. S.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Bommer, A.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Brown, K. R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Buckley, B. B.

A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. V. d. Walle, “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres,” New J. Phys. 16, 073026 (2014).
[Crossref]

Buczak, K.

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Burek, M. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Cardenas, J.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

Chang, H.-C.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).

Chau, F. S.

Chen, E.

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

Chen, E. H.

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

Chew, X.

Childress, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Chu, Y.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Cirac, J. I.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Clevenson, H.

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

Cotlet, M.

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

de Boer, M.

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

de Leon, N. P.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

de Sterke, C. M.

Delobbe, A.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Deng, J.

Deppe, D. G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).

Devitt, S. J.

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Doscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Dréau, A. E.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Duan, L.-M.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Edmonds, A. M.

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

Elkouss, D.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Elwenspoek, M.

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

Engel, P.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

Englund, D.

D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
[Crossref] [PubMed]

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

S. L. Mouradian and D. Englund, “A Tunable Waveguide-Coupled Cavity Design for Efficient Spin-Photon Interfaces in Photonic Integrated Circuits,” arXiv:1610.08950 [physics, physics:quant-ph] (2016).

Englund, D. R.

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

Evans, R.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Everitt, M. S.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
[Crossref]

Fattal, D.

C. Santori, D. Fattal, and Y. Yamamoto, Single-photon Devices and Applications (John Wiley & Sons, 2010).

Fischer, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Fu, K.-M. C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
[Crossref]

Fuchs, G. D.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
[Crossref] [PubMed]

Fujiwara, M.

Gaathon, O.

D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
[Crossref] [PubMed]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

Gibbs, H. M.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Goldstein, J.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

Gregor, M.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[Crossref]

Greibe, T.

T. Greibe, T. A. Anhøj, L. S. Johansen, and A. Han, “Quality control of JEOL JBX-9500fsz e-beam lithography system in a multi-user laboratory,” Microelectron. Eng. 155, 25–28 (2016).
[Crossref]

Gsell, S.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Han, A.

T. Greibe, T. A. Anhøj, L. S. Johansen, and A. Han, “Quality control of JEOL JBX-9500fsz e-beam lithography system in a multi-user laboratory,” Microelectron. Eng. 155, 25–28 (2016).
[Crossref]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Hänsch, T. W.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).

Hanson, R.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Happel, P.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Harris, N. C.

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Hausmann, B. J. M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Hendrickson, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Hensen, B.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Henze, R.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[Crossref]

Hepp, C.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Hunger, D.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Isoya, J.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Jacques, V.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Jansen, H.

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

Jelezko, F.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Johansen, L. S.

T. Greibe, T. A. Anhøj, L. S. Johansen, and A. Han, “Quality control of JEOL JBX-9500fsz e-beam lithography system in a multi-user laboratory,” Microelectron. Eng. 155, 25–28 (2016).
[Crossref]

Johnson, D.

S. L. Lai, D. Johnson, and R. Westerman, “Aspect ratio dependent etching lag reduction in deep silicon etch processes,” Journal of Vacuum Science & Technology A 24, 1283–1288 (2006).
[Crossref]

Kalb, N.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Kaupp, H.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).

Kewes, G.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Khitrova, G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Kim, J.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Kipfstuhl, L.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Kisslinger, K.

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

Koike, G.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Komatsubara, A.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Koolstra, G.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Lai, S. L.

S. L. Lai, D. Johnson, and R. Westerman, “Aspect ratio dependent etching lag reduction in deep silicon etch processes,” Journal of Vacuum Science & Technology A 24, 1283–1288 (2006).
[Crossref]

Lesik, M.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Li, L.

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

Lipson, M.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

Liu, L. R.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

Liu, M.

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

Lochel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Loke, Y. C.

Loncar, M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Lu, M.

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

Lukin, M. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Markham, M.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Markham, M. L.

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

Maunz, P.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

McGuinness, L. P.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Meijer, J.

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Mitchell, M. W.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Monroe, C.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Mosor, S.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Mouradian, S.

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

Mouradian, S. L.

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

S. L. Mouradian and D. Englund, “A Tunable Waveguide-Coupled Cavity Design for Efficient Spin-Photon Interfaces in Photonic Integrated Circuits,” arXiv:1610.08950 [physics, physics:quant-ph] (2016).

Mower, J.

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

Mücklich, F.

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Munro, W. J.

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Nam, C.-Y.

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

Naydenov, B.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Neagu, C.

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

Nemoto, K.

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Neu, E.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

J. Riedrich-Möller, E. Neu, and C. Becher, “Design of microcavities in diamond-based photonic crystals by Fourier-and real-space analysis of cavity fields,” Photonics and Nanostructures - Fundamentals and Applications 8, 150–162 (2010).
[Crossref]

Nöbauer, T.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Nüsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Ohshima, T.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Onoda, S.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Park, H.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Pauly, C.

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Pezzagna, S.

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Pfaff, W.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Poitras, C. B.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

Pruneri, V.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Physical Review 69, 681 (1946).

Quan, Q.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Rasser, B.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Raussendorf, R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Reichel, J.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).

Reiserer, A.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Richards, B. C.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Riedrich-Möller, J.

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

J. Riedrich-Möller, E. Neu, and C. Becher, “Design of microcavities in diamond-based photonic crystals by Fourier-and real-space analysis of cavity fields,” Photonics and Nanostructures - Fundamentals and Applications 8, 150–162 (2010).
[Crossref]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Robledo, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Roch, J.-F.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Rogers, L.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Ruitenberg, J.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Ruthven, A.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Salord, O.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Salzman, J.

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
[Crossref]

C. Santori, D. Fattal, and Y. Yamamoto, Single-photon Devices and Applications (John Wiley & Sons, 2010).

Scarabelli, D.

D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
[Crossref] [PubMed]

Scharfenberger, B.

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Schell, A. W.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schenkel, T.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
[Crossref] [PubMed]

Scherer, A.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Schmiedmayer, J.

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schouten, R. N.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Schreck, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Schröder, T.

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[Crossref]

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

Schukraft, M.

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

Shchekin, O. B.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Shields, B. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Shinada, T.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Smulders, E.

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Sørensen, A. S.

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Spinicelli, P.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Steel, M. J.

Stein, A.

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

Stephens, A. M.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Sudraud, P.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Sweet, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Takeuchi, S.

Tallaire, A.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Taminiau, T. H.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Tamura, S.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Tang, X.

Tanii, T.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Tas, N.

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

Taylor, J. M.

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Teraji, T.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Thompson, J. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

Tiecke, T. G.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

Tomljenovic-Hanic, S.

Toyli, D. M.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
[Crossref] [PubMed]

Trupke, M.

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

Trusheim, M.

D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
[Crossref] [PubMed]

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

Trusheim, M. E.

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

Twitchen, D. J.

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Vermeulen, R. F. L.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Vuckovic, J.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Vuletic, V.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

Walle, C. G. V. d.

A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. V. d. Walle, “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres,” New J. Phys. 16, 073026 (2014).
[Crossref]

Walsh, M.

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

Wandt, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Wehner, S.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Weis, C. D.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
[Crossref] [PubMed]

Westerman, R.

S. L. Lai, D. Johnson, and R. Westerman, “Aspect ratio dependent etching lag reduction in deep silicon etch processes,” Journal of Vacuum Science & Technology A 24, 1283–1288 (2006).
[Crossref]

Wiegerink, R.

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

Wind, S. J.

D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
[Crossref] [PubMed]

Wolff, S.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Wu, E.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Yamamoto, Y.

C. Santori, D. Fattal, and Y. Yamamoto, Single-photon Devices and Applications (John Wiley & Sons, 2010).

Yan, L.

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Yoshie, T.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Yu, H.

Zhao, H.-Q.

Zheng, J.

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

Zhou, G.

Zibrov, A. S.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Ziegler, J. F.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods. Phys. Res. B 268, 1818–1823 (2010).
[Crossref]

Ziegler, M. D.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods. Phys. Res. B 268, 1818–1823 (2010).
[Crossref]

Zoller, P.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

APL Photonics (1)

M. Schukraft, J. Zheng, T. Schröder, S. L. Mouradian, M. Walsh, M. E. Trusheim, H. Bakhru, and D. R. Englund, “Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides,” APL Photonics 1, 020801 (2016).
[Crossref]

Appl. Phys. Express (1)

S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, and T. Tanii, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Express 7, 115201 (2014).
[Crossref]

Appl. Phys. Lett. (5)

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, “Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett. 106, 221103 (2015).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Journal of the Optical Society of America B (1)

T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M. Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, “Quantum nanophotonics in diamond [Invited],” Journal of the Optical Society of America B 33, B65 (2016).
[Crossref]

Journal of Vacuum Science & Technology A (1)

S. L. Lai, D. Johnson, and R. Westerman, “Aspect ratio dependent etching lag reduction in deep silicon etch processes,” Journal of Vacuum Science & Technology A 24, 1283–1288 (2006).
[Crossref]

Microelectron. Eng. (2)

H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng. 35, 45–50 (1997).
[Crossref]

T. Greibe, T. A. Anhøj, L. S. Johansen, and A. Han, “Quality control of JEOL JBX-9500fsz e-beam lithography system in a multi-user laboratory,” Microelectron. Eng. 155, 25–28 (2016).
[Crossref]

Nano Lett. (5)

I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, H. Clevenson, and D. Englund, “Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks,” Nano Lett. 15, 1751–1758 (2015).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10, 3168–3172 (2010).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

D. Scarabelli, M. Trusheim, O. Gaathon, D. Englund, and S. J. Wind, “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond,” Nano Lett. 16, 4982–4990 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
[Crossref] [PubMed]

Nat. Nanotech. (1)

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotech. 7, 69–74 (2012).
[Crossref]

Nat. Photon. (1)

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photon. 5, 301–305 (2011).
[Crossref]

Nature (6)

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. V. d. Walle, “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres,” New J. Phys. 16, 073026 (2014).
[Crossref]

Nucl. Instrum. Methods. Phys. Res. B (1)

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods. Phys. Res. B 268, 1818–1823 (2010).
[Crossref]

Opt. Express (3)

Photonics and Nanostructures - Fundamentals and Applications (1)

J. Riedrich-Möller, E. Neu, and C. Becher, “Design of microcavities in diamond-based photonic crystals by Fourier-and real-space analysis of cavity fields,” Photonics and Nanostructures - Fundamentals and Applications 8, 150–162 (2010).
[Crossref]

Phys. Rev. A (2)

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Phys. Rev. Lett. (3)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Phys. Rev. X (2)

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4, 031022 (2014).
[Crossref]

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit,” Phys. Rev. X 5, 031009 (2015).
[Crossref]

physica status solidi (a) (1)

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, and J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” physica status solidi (a) 210, 2055–2059 (2013).
[Crossref]

Physical Review (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Physical Review 69, 681 (1946).

Sci. Rep. (2)

L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
[Crossref] [PubMed]

K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer, and W. J. Munro, “Photonic Quantum Networks formed from NV- centers,” Sci. Rep. 6, 26284 (2016).
[Crossref]

Other (6)

T. Schröder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in “Conference on Lasers and Electro-Optics 2014,” (OSA, 2014), OSA Technical Digest (online), p. FW1B.6.

T. Schröder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon, and D. R. Englund, “Deterministic High-yield Creation of Nitrogen Vacancy Centers in Diamond Photonic Crystal Cavities and Photonic Elements,” in “Conference on Lasers and Electro-Optics 2015,” (OSA, 2015), OSA Technical Digest (online), p. FTh3B.1.

I. Bayn, E. Chen, L. Li, M. Trusheim, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger, and D. Englund, “Implantation of proximal NV clusters in diamond by lithographically defined silicon masks with 5 nm resolution,” in “CLEO: 2014,” (Optical Society of America, 2014), OSA Technical Digest (online), p. FW3B.2.

C. Santori, D. Fattal, and Y. Yamamoto, Single-photon Devices and Applications (John Wiley & Sons, 2010).

S. L. Mouradian and D. Englund, “A Tunable Waveguide-Coupled Cavity Design for Efficient Spin-Photon Interfaces in Photonic Integrated Circuits,” arXiv:1610.08950 [physics, physics:quant-ph] (2016).

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” arXiv:1304.0948 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illustration of a spin-photon interface. To enable efficient spin—photon interaction, the optical dipole of the associated electron spin is coupled to an optical cavity, here an L3 cavity. The inset schematics shows the nitrogen vacancy (NV) center in diamond coupled to an optical cavity. g, κ, and γ are the Rabi frequency, the cavity dissipation rate, and NV spontaneous emission rate, respectively. N is nitrogen, V vacancy, and the dark gray circles represent carbon.

Fig. 2
Fig. 2

Design and properties of phonic crystal cavities. a) |E|2 distribution of L3 cavity with three missing holes; design similar to [27]. The left and right inset show a vertical and horizontal cut, respectively. b) |E|2 distribution of M0 cavity with no missing but shifted holes, design similar to [28].

Fig. 3
Fig. 3

Illustration of the fabrication process. The sample preparation and nanopatterning are detailed in Ref. [32]. In addition to this method, we use the Si mask both for diamond pattering (step 3, oxygen dry etch) as well as implantation mask for 15N (step 4, implantation). By using the same mask for both steps, we achieve inherent self-alignment of the nanostructure to the implantation aperture. .

Fig. 4
Fig. 4

a) Scanning electron micrograph (SEM) of silicon hard mask for dry etching and ion implantation. The photonic crystal contains three L3 cavities as well as one M0 cavity (bottom right, dotted circle). Inset: Zoom-in. b) SEM of patterned diamond membrane. At the position of the implantation apertures no surface damage is visible, indicating the very slow etch rate due to etching lag reduction [33]. The SEM was not taken on the highest quality sample, samples that showed the reported Q-factors were not imaged in the scanning electron microscope as this can lead to NV charge conversion and even permanent bleaching of the NV.

Fig. 5
Fig. 5

Photoluminescence raster scans of three different photonic crystal areas with each four cavities (as in Fig. 4(a))) in sample region A. The scan reveals the distribution of fluorescent NV centers. The red dots indicate the approximate position of the cavity maxima where spectra where taken. One or several NVs are indicated by a red dot with black circle, cavity maxima with no NV by red dots with white circle. As expected, at the cavity positions, hence the position of the implantation aperture, the NV density is much higher compared to the photonic crystal region. The unit on the x- and y-axes is μm.

Fig. 6
Fig. 6

Statistical analysis of coupled NV-cavity systems. The number of NVs per cavity is plotted and the distribution is fitted according to a Poisson distribution. For sample region A (left plot) and B (right plot) we estimate an average occurrence of 1.1 ± 0.2 and ∼3 NVs per cavity, yielding in a ∼63% and ∼95% probability of finding at least one NV per cavity, respectively. The method for this analysis is detailed in the main text.

Fig. 7
Fig. 7

Spectrum of a single NV coupled to an L3 cavity with an estimated Fint = 26 ± 3. The blue line is a fit to the data with three Lorentian functions for the cavity resonances and a Gaussian function for a simplified representation of the broad NV phonon sideband fluorescence. Comparing the peak maximum intensity with the sideband intensity at the same spectral position yields the given intensity enhancement. Right: Second-order auto-correlation of the cavity coupled single NV. The fit (red curve) yields g2(0) ∼ 0.38.

Fig. 8
Fig. 8

M0 cavities coupled to single targeted NVs. a) Spectrum of enhanced ZPL at 638 nm and PSB. Several resonances are visible at 634.9 nm, 638.4 nm, and 655.7 nm, with Q = 1020, Q = 1550, and Q = 3950, respectively. Fitting the data as discussed in the main text, we determine Fint ∼ 12, Fint ∼ 20 Fint ∼ 43, respectively, for this single NV. Particularly relevant is the cavity resonance at 638.4 nm where the NV ZPL is located. b) Another single NV—M0 cavity system with narrow resonance (Q = 3280) at 697.2 nm enhancing the phonon sideband. Fitting yields an enhancement of the photon rate density by a factor of Fint = 93 ± 7. The blue lines are fits to the data as detailed in the main text.

Fig. 9
Fig. 9

Temperature tuning of L3 cavity and Purcell enhancement of a single ZPL. This NV, in contrast to the data above was created by random nitrogen implantation before nanofabrication. The spectra at 14 K and 19 K are normalized to the spectrum at 12.5 K via the ZPL1 intensity. The inset in the left plot indicates a cavity resonance with an estimated quality factor Q ∼ 8000, indicating the high quality fabrication but at the same time by far non-ideal localization of the NV. The red line is a double Lorentian fit to the data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ZPL = ξ F ZPL max 1 1 + 4 Q 2 ( λ ZPL / λ cav 1 ) 2

Metrics