Abstract

One-dimensional gratings of 700-nm period were imprinted on a soda-aluminosilicate glass (NAS) and a soda-lime silicate glass (NCS) using a platinum-coated SiO2 mold with application of DC voltage. The migration of network modifier cations below the anode side surface to the cathode side is a necessary condition for grating formation. Glass surfaces were chemically etched using a 55% KOH solution at 70°C. The top area of the NAS grating ridge, where the non-contacted area of the mold is located, was etched preferentially. Finally, the reverse concavo-convex grating appeared by etching. Localized stress corrosion in the grating ridge is expected to be an origin of the anisotropic etching and the grating pattern formation. In contrast, such anomalous etching behavior was not observed for the NCS. The bottom of the grating groove, the mold contacted area, was etched monotonously, maintaining the initial sinusoidal grating shape.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imprinting of glass

Lauren A. H. Fleming, David M. Goldie, and Amin Abdolvand
Opt. Mater. Express 5(8) 1674-1681 (2015)

Micro-structuring of glassy carbon for precision glass molding of binary diffractive optical elements

Karin Prater, Julia Dukwen, Toralf Scharf, Hans Peter Herzig, Sven Plöger, and Andreas Hermerschmidt
Opt. Mater. Express 6(11) 3407-3416 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36(7), 1566–1572 (1997).
    [Crossref] [PubMed]
  2. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
    [Crossref]
  3. X. Cui, K. Tawa, H. Hori, and J. Nishii, “Duty ratio-dependent fluorescence enhancement through surface Plasmon resonance in Ag-coated gratings,” Appl. Phys. Lett. 95(13), 133117 (2009).
    [Crossref]
  4. T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
    [Crossref]
  5. Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
    [Crossref]
  6. A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses – A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
    [Crossref]
  7. J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
    [Crossref]
  8. T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
    [Crossref] [PubMed]
  9. K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
    [Crossref]
  10. T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
    [Crossref]
  11. T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
    [Crossref]
  12. T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
    [Crossref]
  13. P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
    [Crossref]
  14. I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
    [Crossref] [PubMed]
  15. C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
    [Crossref]
  16. H. An and S. Fleming, “Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses,” J. Opt. Soc. Am. B 23(11), 2303–2309 (2006).
    [Crossref]
  17. O. Deparis, C. Corbari, P. Kazansky, and K. Sakaguchi, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84(24), 4857–4859 (2004).
    [Crossref]
  18. H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
    [Crossref]
  19. N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
    [Crossref]
  20. A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
    [Crossref] [PubMed]
  21. S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
    [Crossref]
  22. S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, “Griffith cracks at the nanoscale,” Int. J. Appl. Glass Sci. 4(2), 76–86 (2013).
    [Crossref]

2016 (2)

J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

2013 (3)

S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, “Griffith cracks at the nanoscale,” Int. J. Appl. Glass Sci. 4(2), 76–86 (2013).
[Crossref]

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
[Crossref] [PubMed]

2010 (1)

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

2009 (3)

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Duty ratio-dependent fluorescence enhancement through surface Plasmon resonance in Ag-coated gratings,” Appl. Phys. Lett. 95(13), 133117 (2009).
[Crossref]

2008 (5)

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (2)

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses – A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

2004 (1)

O. Deparis, C. Corbari, P. Kazansky, and K. Sakaguchi, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84(24), 4857–4859 (2004).
[Crossref]

2003 (1)

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

2001 (1)

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
[Crossref]

1997 (1)

1993 (1)

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Achete, C. A.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

An, H.

Brunkov, P. N.

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
[Crossref]

Cai, J.

J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
[Crossref]

Ciccotti, M.

S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, “Griffith cracks at the nanoscale,” Int. J. Appl. Glass Sci. 4(2), 76–86 (2013).
[Crossref]

Corbari, C.

O. Deparis, C. Corbari, P. Kazansky, and K. Sakaguchi, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84(24), 4857–4859 (2004).
[Crossref]

Cui, X.

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Duty ratio-dependent fluorescence enhancement through surface Plasmon resonance in Ag-coated gratings,” Appl. Phys. Lett. 95(13), 133117 (2009).
[Crossref]

Deparis, O.

O. Deparis, C. Corbari, P. Kazansky, and K. Sakaguchi, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84(24), 4857–4859 (2004).
[Crossref]

Fett, T.

S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, “Griffith cracks at the nanoscale,” Int. J. Appl. Glass Sci. 4(2), 76–86 (2013).
[Crossref]

Fleming, S.

Freire Jr, F. L.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Fukumi, K.

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

Funatsu, S.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Ge, H.

J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
[Crossref]

Giacometti, J. A.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Goncharov, V. V.

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
[Crossref]

Guin, J. P.

S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, “Griffith cracks at the nanoscale,” Int. J. Appl. Glass Sci. 4(2), 76–86 (2013).
[Crossref]

Guo, X.

J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
[Crossref]

Harada, K.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Hasegawa, K.

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
[Crossref] [PubMed]

Hatano, T.

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
[Crossref] [PubMed]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

Hirai, Y.

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Hori, H.

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Duty ratio-dependent fluorescence enhancement through surface Plasmon resonance in Ag-coated gratings,” Appl. Phys. Lett. 95(13), 133117 (2009).
[Crossref]

Ikeda, H.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Ikeda, S.

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Ikutame, N.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Iwata, K.

Jain, A.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses – A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

Karvinen, P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Kasa, H.

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
[Crossref] [PubMed]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

Kawaguchi, K.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Kawata, H.

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

Kazansky, P.

O. Deparis, C. Corbari, P. Kazansky, and K. Sakaguchi, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84(24), 4857–4859 (2004).
[Crossref]

Kikuta, H.

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
[Crossref]

H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36(7), 1566–1572 (1997).
[Crossref] [PubMed]

Kintaka, K.

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
[Crossref] [PubMed]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

Konichi, T.

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

Kuittinen, M.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Leal Ferreira, G. F.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Leinonen, K.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Lepienski, C. M.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Li, S.

J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
[Crossref]

Li, W.

J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
[Crossref]

Lipovskii, A. A.

I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
[Crossref] [PubMed]

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
[Crossref]

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Maeda, R.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Melehin, V. G.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Melekhin, V. G.

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
[Crossref]

Miyazawa, S.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Mori, T.

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
[Crossref] [PubMed]

Nakajima, M.

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

Nishii, J.

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Duty ratio-dependent fluorescence enhancement through surface Plasmon resonance in Ag-coated gratings,” Appl. Phys. Lett. 95(13), 133117 (2009).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” Opt. Lett. 33(5), 428–430 (2008).
[Crossref] [PubMed]

Ohira, Y.

Okano, M.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
[Crossref]

Petrov, M. I.

I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
[Crossref] [PubMed]

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
[Crossref]

Rutckaia, V. V.

I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
[Crossref] [PubMed]

Sakaguchi, K.

O. Deparis, C. Corbari, P. Kazansky, and K. Sakaguchi, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84(24), 4857–4859 (2004).
[Crossref]

Sakai, D.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Samusev, A. K.

I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
[Crossref] [PubMed]

Sasaki, K.

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Sinev, I. S.

I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
[Crossref] [PubMed]

Sumitani, H.

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Suzuki, T.

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Svirko, Y. P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Takagi, H.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Takagi, N.

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Takahara, K.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
[Crossref]

Takahashi, M.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Tamura, T.

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

Tanaka, Y.

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Tawa, K.

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Duty ratio-dependent fluorescence enhancement through surface Plasmon resonance in Ag-coated gratings,” Appl. Phys. Lett. 95(13), 133117 (2009).
[Crossref]

Toyota, H.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
[Crossref]

Umetani, M.

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

Uraji, K.

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Wiederhorn, S. M.

S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, “Griffith cracks at the nanoscale,” Int. J. Appl. Glass Sci. 4(2), 76–86 (2013).
[Crossref]

Yabe, H.

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Yamada, K.

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

Yamamoto, K.

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Yamashita, N.

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

Yi, A. Y.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses – A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

Yoshida, S.

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

Yoshikawa, T.

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

Yotsuya, T.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
[Crossref]

Zhurikhina, V. V.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (2)

T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, and J. Nishii, “Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process,” Appl. Phys. Express 3(11), 112501 (2010).
[Crossref]

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Appl. Phys. Lett. (2)

O. Deparis, C. Corbari, P. Kazansky, and K. Sakaguchi, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84(24), 4857–4859 (2004).
[Crossref]

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Duty ratio-dependent fluorescence enhancement through surface Plasmon resonance in Ag-coated gratings,” Appl. Phys. Lett. 95(13), 133117 (2009).
[Crossref]

Appl. Surf. Sci. (1)

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, “Griffith cracks at the nanoscale,” Int. J. Appl. Glass Sci. 4(2), 76–86 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses – A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

J. Appl. Phys. (1)

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

J. Ceram. Soc. Jpn. (1)

T. Mori, N. Yamashita, H. Kasa, K. Fukumi, K. Kintaka, and J. Nishii, “Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint,” J. Ceram. Soc. Jpn. 117(1370), 1134–1137 (2009).
[Crossref]

J. Non-Cryst. Solids (2)

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (2)

J. Cai, S. Li, X. Guo, H. Ge, and W. Li, “Induction-heated nanoimprint on soda-lime glass using sapphire molds,” J. Vac. Sci. Technol. B 34(6), 06K408 (2016).
[Crossref]

T. Yoshikawa, T. Konichi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23(6), 2939–2943 (2005).
[Crossref]

Jpn. J. Appl. Phys. (3)

Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, “High aspect pattern fabrication by nano imprint lithography using fine diamond mold,” Jpn. J. Appl. Phys. 42(1), 3863–3866 (2003).
[Crossref]

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(2), L747–L749 (2001).
[Crossref]

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, “Fabrication of sub-wavelength periodic structures upon high-refractive-index glasses by precision glass,” Jpn. J. Appl. Phys. 47, 4746–4750 (2008).
[Crossref]

Nanoscale Res. Lett. (1)

I. S. Sinev, M. I. Petrov, A. K. Samusev, V. V. Rutckaia, and A. A. Lipovskii, “Nanoscale patterning of metal nanoparticle distribution in glasses,” Nanoscale Res. Lett. 8(1), 260 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Tech. Phys. Lett. (1)

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass–metal nanocomposites,” Tech. Phys. Lett. 34(12), 73–79 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of electrical nanoimprinting setup.

Fig. 2
Fig. 2

AFM views before and after chemical etching for (a) NCS and (b) NAS after ENI at 450°C and 100 V in applied voltage for 90 s and 3 MPa in pressure.

Fig. 3
Fig. 3

TEM-EDS analysis of NAS grating cross section after ENI: (a) STEM image, (b)−(d) EDS mappings of Na, Al, and Si, respectively.

Fig. 4
Fig. 4

Etching time dependence of cross-sectional AFM profiles for (a) NCS grating and (b) NAS grating.

Fig. 5
Fig. 5

Etching rates of glass surfaces before and after ENI at 450°C, 100 V in applied voltage for 90 s and 3 MPa pressure using a Pt-coated flat mold without a fine pattern: (a) NCS and (b) NAS.

Fig. 6
Fig. 6

Schematics of depth position for gratings appeared by etching for (a) NCS and (b) NAS after ENI. The NCS concentration profile was referred from Ref [21].

Fig. 7
Fig. 7

Anode side surface profile of NAS before and after ENI at 450°C, with 100 V applied voltage for 90 s and 3 MPa pressure using a Pt-coated flat mold without a fine pattern.

Fig. 8
Fig. 8

Formation image of localized tension at grating ridge during ENI: (a) initial stage of Na+ migration, (b) collapse of mold ridge to NAS followed by second stage of Na+ migration, (c) generation of tension in grating ridge center. The red arrow and red pasted area respectively show schematic stress vector and localized tension induced by Na+ migration and collapse.

Fig. 9
Fig. 9

Surface images of (a) two-dimensional mold, the imprinted surfaces of (b) NCS and (c) NAS before and after etching for 150 min and 30 min, respectively, and (d) formation image of two-dimensional stress on the imprinted NAS surface.

Metrics