Abstract

The photorefractive effect in Sn2P2S6 (SPS) is caused by a spatial redistribution of both positively charged and negatively charged carriers, which leads to the formation of two out-of-phase space charge gratings that partially compensate each other in the steady state. The unusual intensity dependence of the compensation grating buildup time is reported in this article for antimony doped SPS; it is explained by the thermal excitation of electrons into conduction band from the optically recharged Sb3+ → Sb2+ impurity ions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual role of Sb ions as electron traps and hole traps in photorefractive Sn2P2S6 crystals

B. E. Kananen, E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, J. W. McClory, N. C. Giles, and L. E. Halliburton
Opt. Mater. Express 6(12) 3992-3999 (2016)

Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals

Boris Sturman, Pierre Mathey, Hans R. Jauslin, Serguey Odoulov, and Alexandre Shumelyuk
J. Opt. Soc. Am. B 24(6) 1303-1309 (2007)

Interband photorefraction in Sn2P2S6 at visible wavelengths

Roger Mosimann, Daniel Haertle, Mojca Jazbinsek, Germano Montemezzani, and Peter Günter
J. Opt. Soc. Am. B 23(8) 1620-1625 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, A. Grabar, and I. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13(10), 2352–2360 (1996).
    [Crossref]
  2. S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, A. Grabar, and I. Stoyka, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21(10), 752–754 (1996).
    [Crossref] [PubMed]
  3. M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67(3), 192–194 (1988).
    [Crossref]
  4. S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” Appl. Phys. 68(7), 3099–3103 (1990).
    [Crossref]
  5. V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” Appl. Phys. 109, 024901 (2011).
    [Crossref]
  6. A. Donnermeyer, H. Vogt, and E. Krätzig, “Complementary gratings due to electron and hole conductivity in aluminium-doped bismuth titanium oxide crystals,” Phys. Stat. Sol. (a) 200(2), 451–456 (2003).
    [Crossref]
  7. A. Donnermeyer and E. Krätzig, “Influence of light intensity and crystal temperature on photorefractive charge-compensation processes in Al-doped Bi12TiO20 crystals,” Phys. Stat. Sol. (a) 201(3), 1257–1259 (2004).
  8. A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
    [Crossref]
  9. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
    [Crossref]
  10. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10(2), 171–185 (1993).
    [Crossref]
  11. A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, “Transient gain enhancement in photorefractive crystals with two types of movable charge carrier,” Opt. Lett. 32(14), 1959–1961 (2007).
    [Crossref] [PubMed]
  12. A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Coherent optical oscillator with periodic zero-Pi phase modulation,” Phys. Rev. A 72, 023819 (2005).
    [Crossref]
  13. A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Optical multivibrator with ferroelectric Sn2P2S6,” Ferroelectrics,  348(1), 19–24 (2007).
    [Crossref]
  14. D R. Evans, A. Shumelyuk, G. Cook, and S. Odoulov, “Secondary photorefractive centers in Sn2P2S6:Sb crystals,” Opt. Lett. 36(4), 454–456 (2011).
    [Crossref] [PubMed]
  15. J. Strait and A. M. Glass, “Time-resolved photorefractive four-wave mixing in semiconductor materials,” J. Opt. Soc. Am. B 3(2) 342–344 (1986).
    [Crossref]
  16. I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
    [Crossref]
  17. T. Bach, M Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
    [Crossref]
  18. B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24(6), 1301–1309 (2007).
  19. A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
    [Crossref]
  20. Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
    [Crossref]
  21. S. Basun, L. E. Halliburton, and D. R. Evans, “Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6 crystals detected with electron paramagnetic resonance,” Appl. Phys. Lett. 110, 052903 (2017).
    [Crossref]
  22. R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).
  23. S. A. Basun and D. R. Evans, “Identification of the specific Fe centers and associated defects of structure responsible for enhanced dynamic holography in photorefractive KNbO3:Fe,” Phys. Rev. B 93094102 (2016).
    [Crossref]
  24. A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).
  25. J. Feinberg, D. Heiman, A. R. Tanguay, and R. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” Appl. Phys. 51(3), 1297–1305 (1980).
    [Crossref]
  26. K. Shcherbin, “High photorefractive gain at counterpropagating geometry in CdTe:Ge at 1.064 μm and 1.55 μm,” Appl. Opt. 48(2), 371–374 (2009).
    [Crossref] [PubMed]
  27. Boris I. Sturman, “Space-Charge Wave Effects in Photorefractive Materials,” in Photorefractive Materials and Their Applications 1: Materials, P. Günter and J.-P. Huignard, eds. Vol. 113 of Springer Series in Optical Sciences (Springer, 2006), pp. 119–162.
    [Crossref]

2017 (1)

S. Basun, L. E. Halliburton, and D. R. Evans, “Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6 crystals detected with electron paramagnetic resonance,” Appl. Phys. Lett. 110, 052903 (2017).
[Crossref]

2016 (1)

S. A. Basun and D. R. Evans, “Identification of the specific Fe centers and associated defects of structure responsible for enhanced dynamic holography in photorefractive KNbO3:Fe,” Phys. Rev. B 93094102 (2016).
[Crossref]

2015 (1)

Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

2013 (1)

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

2012 (1)

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

2011 (2)

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” Appl. Phys. 109, 024901 (2011).
[Crossref]

D R. Evans, A. Shumelyuk, G. Cook, and S. Odoulov, “Secondary photorefractive centers in Sn2P2S6:Sb crystals,” Opt. Lett. 36(4), 454–456 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (1)

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

2007 (4)

B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24(6), 1301–1309 (2007).

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Optical multivibrator with ferroelectric Sn2P2S6,” Ferroelectrics,  348(1), 19–24 (2007).
[Crossref]

T. Bach, M Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, “Transient gain enhancement in photorefractive crystals with two types of movable charge carrier,” Opt. Lett. 32(14), 1959–1961 (2007).
[Crossref] [PubMed]

2006 (1)

R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).

2005 (1)

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Coherent optical oscillator with periodic zero-Pi phase modulation,” Phys. Rev. A 72, 023819 (2005).
[Crossref]

2004 (1)

A. Donnermeyer and E. Krätzig, “Influence of light intensity and crystal temperature on photorefractive charge-compensation processes in Al-doped Bi12TiO20 crystals,” Phys. Stat. Sol. (a) 201(3), 1257–1259 (2004).

2003 (1)

A. Donnermeyer, H. Vogt, and E. Krätzig, “Complementary gratings due to electron and hole conductivity in aluminium-doped bismuth titanium oxide crystals,” Phys. Stat. Sol. (a) 200(2), 451–456 (2003).
[Crossref]

1996 (2)

1993 (1)

1990 (1)

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” Appl. Phys. 68(7), 3099–3103 (1990).
[Crossref]

1988 (1)

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67(3), 192–194 (1988).
[Crossref]

1986 (1)

1980 (1)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” Appl. Phys. 51(3), 1297–1305 (1980).
[Crossref]

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[Crossref]

Amodei, J. J.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[Crossref]

Bach, T.

Basun, S.

S. Basun, L. E. Halliburton, and D. R. Evans, “Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6 crystals detected with electron paramagnetic resonance,” Appl. Phys. Lett. 110, 052903 (2017).
[Crossref]

Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Basun, S. A.

S. A. Basun and D. R. Evans, “Identification of the specific Fe centers and associated defects of structure responsible for enhanced dynamic holography in photorefractive KNbO3:Fe,” Phys. Rev. B 93094102 (2016).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

Basun, S.A.

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

Brant, A. T.

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

Brant, A.T.

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

Bukivsij, P. M.

R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).

Cook, G.

de Oliveira, I.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” Appl. Phys. 109, 024901 (2011).
[Crossref]

Donnermeyer, A.

A. Donnermeyer and E. Krätzig, “Influence of light intensity and crystal temperature on photorefractive charge-compensation processes in Al-doped Bi12TiO20 crystals,” Phys. Stat. Sol. (a) 201(3), 1257–1259 (2004).

A. Donnermeyer, H. Vogt, and E. Krätzig, “Complementary gratings due to electron and hole conductivity in aluminium-doped bismuth titanium oxide crystals,” Phys. Stat. Sol. (a) 200(2), 451–456 (2003).
[Crossref]

Evans, D R.

Evans, D.

Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Evans, D. R.

S. Basun, L. E. Halliburton, and D. R. Evans, “Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6 crystals detected with electron paramagnetic resonance,” Appl. Phys. Lett. 110, 052903 (2017).
[Crossref]

S. A. Basun and D. R. Evans, “Identification of the specific Fe centers and associated defects of structure responsible for enhanced dynamic holography in photorefractive KNbO3:Fe,” Phys. Rev. B 93094102 (2016).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, “Transient gain enhancement in photorefractive crystals with two types of movable charge carrier,” Opt. Lett. 32(14), 1959–1961 (2007).
[Crossref] [PubMed]

Evans, D.R.

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

Fedyo, K. V.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Feinberg, J.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” Appl. Phys. 51(3), 1297–1305 (1980).
[Crossref]

Frejlich, J.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” Appl. Phys. 109, 024901 (2011).
[Crossref]

Gadret, G.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Gamernyk, R. V.

R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).

Giles, N. C.

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

Giles, N.C.

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

Glass, A. M.

Gnatenko, Yu. P.

R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).

Grabar, A.

S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, A. Grabar, and I. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13(10), 2352–2360 (1996).
[Crossref]

S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, A. Grabar, and I. Stoyka, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21(10), 752–754 (1996).
[Crossref] [PubMed]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
[Crossref]

Grabar, A. A.

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

T. Bach, M Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

Grabar, A.A.

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

Günter, P.

T. Bach, M Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10(2), 171–185 (1993).
[Crossref]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
[Crossref]

Halliburton, L. E.

S. Basun, L. E. Halliburton, and D. R. Evans, “Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6 crystals detected with electron paramagnetic resonance,” Appl. Phys. Lett. 110, 052903 (2017).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

Halliburton, L.E.

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” Appl. Phys. 51(3), 1297–1305 (1980).
[Crossref]

Hellwarth, R.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” Appl. Phys. 51(3), 1297–1305 (1980).
[Crossref]

Hellwig, U.

Hryhorashchuk, A.

A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, “Transient gain enhancement in photorefractive crystals with two types of movable charge carrier,” Opt. Lett. 32(14), 1959–1961 (2007).
[Crossref] [PubMed]

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Optical multivibrator with ferroelectric Sn2P2S6,” Ferroelectrics,  348(1), 19–24 (2007).
[Crossref]

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Coherent optical oscillator with periodic zero-Pi phase modulation,” Phys. Rev. A 72, 023819 (2005).
[Crossref]

Jauslin, H. R.

B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24(6), 1301–1309 (2007).

Jazbinsek, M

Jazbinsek, M.

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
[Crossref]

Jerez, V.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” Appl. Phys. 109, 024901 (2011).
[Crossref]

Kedyk, I. V.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Krätzig, E.

A. Donnermeyer and E. Krätzig, “Influence of light intensity and crystal temperature on photorefractive charge-compensation processes in Al-doped Bi12TiO20 crystals,” Phys. Stat. Sol. (a) 201(3), 1257–1259 (2004).

A. Donnermeyer, H. Vogt, and E. Krätzig, “Complementary gratings due to electron and hole conductivity in aluminium-doped bismuth titanium oxide crystals,” Phys. Stat. Sol. (a) 200(2), 451–456 (2003).
[Crossref]

Mathey, P.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24(6), 1301–1309 (2007).

Miteva, M.

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” Appl. Phys. 68(7), 3099–3103 (1990).
[Crossref]

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67(3), 192–194 (1988).
[Crossref]

Montemezzani, G.

T. Bach, M Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10(2), 171–185 (1993).
[Crossref]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
[Crossref]

Nikolova, L.

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67(3), 192–194 (1988).
[Crossref]

Odoulov, S

Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Odoulov, S.

Odoulov, S.G.

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

Prits, I. P.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Rupp, R.

Shcherbin, K.

Shumelyuk, A.

Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

D R. Evans, A. Shumelyuk, G. Cook, and S. Odoulov, “Secondary photorefractive centers in Sn2P2S6:Sb crystals,” Opt. Lett. 36(4), 454–456 (2011).
[Crossref] [PubMed]

A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, “Transient gain enhancement in photorefractive crystals with two types of movable charge carrier,” Opt. Lett. 32(14), 1959–1961 (2007).
[Crossref] [PubMed]

B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24(6), 1301–1309 (2007).

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Optical multivibrator with ferroelectric Sn2P2S6,” Ferroelectrics,  348(1), 19–24 (2007).
[Crossref]

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Coherent optical oscillator with periodic zero-Pi phase modulation,” Phys. Rev. A 72, 023819 (2005).
[Crossref]

S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, A. Grabar, and I. Stoyka, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21(10), 752–754 (1996).
[Crossref] [PubMed]

S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, A. Grabar, and I. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13(10), 2352–2360 (1996).
[Crossref]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
[Crossref]

Skrypka, Y.

Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Skubenko, P. A.

R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).

Staebler, D. L.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[Crossref]

Stoika, I. M.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Stoyka, I.

Strait, J.

Sturman, B.

B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24(6), 1301–1309 (2007).

Sturman, Boris I.

Boris I. Sturman, “Space-Charge Wave Effects in Photorefractive Materials,” in Photorefractive Materials and Their Applications 1: Materials, P. Günter and J.-P. Huignard, eds. Vol. 113 of Springer Series in Optical Sciences (Springer, 2006), pp. 119–162.
[Crossref]

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” Appl. Phys. 51(3), 1297–1305 (1980).
[Crossref]

Vogt, H.

A. Donnermeyer, H. Vogt, and E. Krätzig, “Complementary gratings due to electron and hole conductivity in aluminium-doped bismuth titanium oxide crystals,” Phys. Stat. Sol. (a) 200(2), 451–456 (2003).
[Crossref]

Vysochanskii, Y M.

Vysochanskii, Yu.

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
[Crossref]

Vysochanskii, Yu. M.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Yu. Slivka, V.

R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).

Zgonik, M.

Zhivkova, S.

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” Appl. Phys. 68(7), 3099–3103 (1990).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (3)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” Appl. Phys. 51(3), 1297–1305 (1980).
[Crossref]

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” Appl. Phys. 68(7), 3099–3103 (1990).
[Crossref]

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” Appl. Phys. 109, 024901 (2011).
[Crossref]

Appl. Phys. B (1)

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Yu. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Appl. Phys. Lett. (2)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[Crossref]

S. Basun, L. E. Halliburton, and D. R. Evans, “Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6 crystals detected with electron paramagnetic resonance,” Appl. Phys. Lett. 110, 052903 (2017).
[Crossref]

Ferroelectrics (1)

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Optical multivibrator with ferroelectric Sn2P2S6,” Ferroelectrics,  348(1), 19–24 (2007).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys.: Condens. Matter (2)

R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18(23), 5323–5331 (2006).

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 25, 205501 (2013).

Opt. Commun. (2)

Y. Skrypka, A. Shumelyuk, S Odoulov, S. Basun, and D. Evans, “Light induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67(3), 192–194 (1988).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Coherent optical oscillator with periodic zero-Pi phase modulation,” Phys. Rev. A 72, 023819 (2005).
[Crossref]

Phys. Rev. B (2)

A.T. Brant, L.E. Halliburton, S.A. Basun, A.A. Grabar, S.G. Odoulov, A. Shumelyuk, N.C. Giles, and D.R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86, 134109 (2012).
[Crossref]

S. A. Basun and D. R. Evans, “Identification of the specific Fe centers and associated defects of structure responsible for enhanced dynamic holography in photorefractive KNbO3:Fe,” Phys. Rev. B 93094102 (2016).
[Crossref]

Phys. Stat. Sol. (a) (2)

A. Donnermeyer, H. Vogt, and E. Krätzig, “Complementary gratings due to electron and hole conductivity in aluminium-doped bismuth titanium oxide crystals,” Phys. Stat. Sol. (a) 200(2), 451–456 (2003).
[Crossref]

A. Donnermeyer and E. Krätzig, “Influence of light intensity and crystal temperature on photorefractive charge-compensation processes in Al-doped Bi12TiO20 crystals,” Phys. Stat. Sol. (a) 201(3), 1257–1259 (2004).

Other (2)

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. Vol. 114 of Springer Series in Optical Sciences (Springer, 2007), pp. 327 – 362.
[Crossref]

Boris I. Sturman, “Space-Charge Wave Effects in Photorefractive Materials,” in Photorefractive Materials and Their Applications 1: Materials, P. Günter and J.-P. Huignard, eds. Vol. 113 of Springer Series in Optical Sciences (Springer, 2006), pp. 119–162.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Temporal dynamics of (a) two-beam coupling and (b) grating erasure in SPS:Sb sample K33. The output intensity of signal beam Is in (a) is normalized to its initial value in the absence of the pump wave I s 0. The diffraction efficiency in (b) is normalized to its saturation value. At t = 0 the signal wave is switched on in panel (a) and switched off in panel (b). The two recording waves from the He-Ne laser impinge upon the z-cut sample symmetrically in the xz-plane and are both y-polarized. The intensities of the signal and pump waves are 2 mW/cm2 and 2 W/cm2, respectively, and the grating spacing is 8 μm.
Fig. 2
Fig. 2 Intensity dependences of reciprocal (a) fast and (b) slow times at ambient temperature for grating spacing 8 μm (filled symbols) and 1.0 μm (open symbols) for K33 SPS:Sb.
Fig. 3
Fig. 3 Arrhenius plot for the reciprocal slow time measured with sample K24; grating spacing Λ = 6 μm, light intensity I = 0.4 W/cm2.
Fig. 4
Fig. 4 Grating-spacing dependence of the reciprocal characteristic decay times normalized to the total intensity of two recording beams. Squares/diamonds and circles mark τf and τs, respectively. Half-filled (red) symbols are used for the antimony doped sample K33, while open symbols denote the nominally undoped reference sample. The lifetime for the compensation grating in the undoped sample is measured with I = 3 W/cm2. Dashed and solid lines are the best fits of theoretical dependences as explained in text.
Fig. 5
Fig. 5 Energy level diagram for antimony doped SPS. The absorption of a He-Ne laser photon creates a free hole in the valence band VB that is captured by a hole trap X and recharges the antimony ion Sb3+Sb2+. A portion of excessive electrons is thermally excited from the antimony level to the conduction band and thus decreases the dielectric relaxation time.
Fig. 6
Fig. 6 Intensity dependence of (a) the Debye screening length s h and (b) the effective hole trap density N eff h SPS:Sb 1% (K33). The solid red line shows the best fit of Eq. (2) to the experimental data.

Tables (1)

Tables Icon

Table 1 Parameters extracted from dynamics for nominally undoped and Sb-doped crystals

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ ( t ) = Γ f [ 1 exp ( t / τ f ) ] Γ s [ 1 exp ( t / τ s ) ] .
N eff h = [ N D h ( 0 ) + ν D h I ] N T h N D h ( 0 ) + ν D h I + N T h ,
N D h ( 0 ) = 4.0 10 14 cm 3 , N h T = 4.0 10 15 cm 3 , ν D h = 2.7 10 16 ( c m W ) 1 ,

Metrics