Abstract

Diode-pumped continuous-wave Nd:LuAG ceramic lasers at the 1.4-μm eye-safe spectral region are reported. A simultaneous dual-wavelength laser at 1418 nm and 1442 nm is achieved with a maximum output power of 1.37 W and a slope efficiency of 13.5% using a plane-concave cavity configuration. Laser generation at another emission line of 1432 nm is also realized with a maximum output power of 0.82 W with the help of an intracavity etalon. To improve the laser beam quality, a parallel plane laser cavity operating still at 1418 nm and 1442 nm is adopted in free-running mode.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full investigation into continuous-wave Nd:LuAG lasers on 4F3/24I13/2 transition around 1.3 and 1.4 μm

Zhi Lin, Jinglong Lan, Qin Cui, Xiaoxu Huang, Bin Xu, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Opt. Mater. Express 6(11) 3386-3393 (2016)

Graphene Q-switched eye-safe Nd:Y3Al5O12 ceramic dual-wavelength laser

Jinliang Guo, Huanian Zhang, and Ping Li
Appl. Opt. 54(22) 6694-6697 (2015)

High-power dual-wavelength eye-safe ceramic Nd:YAG/SrWO4 Raman laser operating at 1501 and 1526  nm

Huanian Zhang, Ping Li, Qingpu Wang, Xiaohan Chen, Xingyu Zhang, Jun Chang, and Xutang Tao
Appl. Opt. 53(31) 7189-7194 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
    [Crossref]
  2. H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm,” Opt. Lett. 38(16), 3075–3077 (2013).
    [Crossref] [PubMed]
  3. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
    [Crossref] [PubMed]
  4. A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and CW operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
    [Crossref]
  5. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
    [Crossref]
  6. W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
    [Crossref]
  7. B. Q. Yao, Y. Ding, X. M. Duan, T. Y. Dai, Y. L. Ju, L. J. Li, and W. J. He, “Efficient Q-switched Ho:GdVO4 laser resonantly pumped at 1942 nm,” Opt. Lett. 39(16), 4755–4757 (2014).
    [Crossref] [PubMed]
  8. G. Galzerano, E. Sani, A. Toncelli, G. Della Valle, S. Taccheo, M. Tonelli, and P. Laporta, “Widely tunable continuous-wave diode-pumped 2-microm Tm-Ho:KYF4 laser,” Opt. Lett. 29(7), 715–717 (2004).
    [Crossref] [PubMed]
  9. J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
    [Crossref]
  10. B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
    [Crossref] [PubMed]
  11. J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
    [Crossref]
  12. H. C. Lee, S. U. Byeon, and A. Lukashev, “Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm,” Opt. Lett. 37(7), 1160–1162 (2012).
    [Crossref] [PubMed]
  13. W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
    [Crossref]
  14. V. Kubecek, V. Couderc, A. Barthelemy, and F. Louradour, “Laser diode pumped Nd:YAG laser operating at an eye-safe wavelength of 1.443μm,” Elec. Lett. 30(25), 2139–2140 (1994).
    [Crossref]
  15. H. Zhang, X. Chen, Q. Wang, X. Zhang, J. Chang, L. Gao, H. Shen, Z. Cong, Z. Liu, X. Tao, and P. Li, “High-efficiency continuous-wave Nd:Gd3Ga5O12 eye-safe laser operating at 1423.4 nm,” Appl. Opt. 52(22), 5469–5472 (2013).
    [Crossref] [PubMed]
  16. H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm,” Opt. Lett. 38(16), 3075–3077 (2013).
    [Crossref] [PubMed]
  17. J. Guo, H. Zhang, and P. Li, “Graphene Q-switched eye-safe Nd:Y3Al5O12 ceramic dual-wavelength laser,” Appl. Opt. 54(22), 6694–6697 (2015).
    [Crossref] [PubMed]
  18. Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
    [Crossref]

2016 (4)

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
[Crossref] [PubMed]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

2015 (1)

2014 (2)

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

B. Q. Yao, Y. Ding, X. M. Duan, T. Y. Dai, Y. L. Ju, L. J. Li, and W. J. He, “Efficient Q-switched Ho:GdVO4 laser resonantly pumped at 1942 nm,” Opt. Lett. 39(16), 4755–4757 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

2011 (1)

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

2010 (1)

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
[Crossref]

2004 (2)

G. Galzerano, E. Sani, A. Toncelli, G. Della Valle, S. Taccheo, M. Tonelli, and P. Laporta, “Widely tunable continuous-wave diode-pumped 2-microm Tm-Ho:KYF4 laser,” Opt. Lett. 29(7), 715–717 (2004).
[Crossref] [PubMed]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

2001 (1)

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and CW operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

1994 (1)

V. Kubecek, V. Couderc, A. Barthelemy, and F. Louradour, “Laser diode pumped Nd:YAG laser operating at an eye-safe wavelength of 1.443μm,” Elec. Lett. 30(25), 2139–2140 (1994).
[Crossref]

1990 (1)

Aggarwal, I.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Baker, C.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Barthelemy, A.

V. Kubecek, V. Couderc, A. Barthelemy, and F. Louradour, “Laser diode pumped Nd:YAG laser operating at an eye-safe wavelength of 1.443μm,” Elec. Lett. 30(25), 2139–2140 (1994).
[Crossref]

Bowman, S. R.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and CW operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Byeon, S. U.

Cai, Z.

Cai, Z. P.

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Camy, P.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Chang, J.

Chen, X.

Chen, X. H.

Cong, Z.

Cong, Z. H.

Couderc, V.

V. Kubecek, V. Couderc, A. Barthelemy, and F. Louradour, “Laser diode pumped Nd:YAG laser operating at an eye-safe wavelength of 1.443μm,” Elec. Lett. 30(25), 2139–2140 (1994).
[Crossref]

Cui, Q.

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Dai, T. Y.

Della Valle, G.

Ding, Y.

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and CW operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Duan, X. M.

Esterowitz, L.

Galzerano, G.

Gao, L.

Guo, J.

He, W. J.

Huang, X.

Huang, X. X.

Hunt, M.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Jelínková, H.

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
[Crossref]

Jin, G. Y.

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Ju, Y. L.

Kim, W.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Kubecek, V.

V. Kubecek, V. Couderc, A. Barthelemy, and F. Louradour, “Laser diode pumped Nd:YAG laser operating at an eye-safe wavelength of 1.443μm,” Elec. Lett. 30(25), 2139–2140 (1994).
[Crossref]

Lan, J.

Lan, J. L.

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Laporta, P.

Lee, H. C.

Li, L. J.

Li, P.

Liang, W.

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Lin, Z.

Liu, Z.

Liu, Z. J.

Louradour, F.

V. Kubecek, V. Couderc, A. Barthelemy, and F. Louradour, “Laser diode pumped Nd:YAG laser operating at an eye-safe wavelength of 1.443μm,” Elec. Lett. 30(25), 2139–2140 (1994).
[Crossref]

Lukashev, A.

Luo, Z.

Menard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Moncorgé, R.

B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
[Crossref] [PubMed]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and CW operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Nejezchleb, K.

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
[Crossref]

Novák, J.

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
[Crossref]

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Sadowski, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Sanghera, J.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Sani, E.

Shaw, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Shen, H.

Shen, H. B.

Škoda, V.

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
[Crossref]

Stoneman, R. C.

Šulc, J.

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
[Crossref]

Sun, G. C.

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Taccheo, S.

Tao, X.

Tao, X. T.

Tigreat, P. Y.

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and CW operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Toncelli, A.

Tonelli, M.

Villalobos, G.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Wang, Q.

Wang, Q. P.

Wang, Y.

B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
[Crossref] [PubMed]

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Xia, J.

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Xu, B.

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
[Crossref] [PubMed]

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

Xu, H.

Xu, H. Y.

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Xu, J.

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

Xu, L. J.

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Xu, X. D.

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Yao, B. Q.

Zhang, H.

Zhang, H. N.

Zhang, J.

Z. Lin, J. L. Lan, Q. Cui, X. X. Huang, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, and J. Xu, “Full investigation into continuous-wave Nd:LuAG lasers on 4F3/2 → 4I13/2 transition around 1.3 and 1.4μm,” Opt. Mater. Express 6(11), 3386–3393 (2016).
[Crossref]

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Zhang, X.

Zhang, X. H.

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Zhang, X. Y.

Zhao, Z. M.

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and CW operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Elec. Lett. (1)

V. Kubecek, V. Couderc, A. Barthelemy, and F. Louradour, “Laser diode pumped Nd:YAG laser operating at an eye-safe wavelength of 1.443μm,” Elec. Lett. 30(25), 2139–2140 (1994).
[Crossref]

IEEE Photonics J. (1)

J. L. Lan, Z. Lin, Y. Wang, Q. Cui, B. Xu, H. Y. Xu, Z. P. Cai, X. D. Xu, J. Zhang, J. Xu, and R. Moncorgé, “Nd:LYAG and Nd:LGAG mixed crystals: potential candidates for 1.83μm laser source,” IEEE Photonics J. 8(6), 1 (2016).
[Crossref]

Laser Phys. Lett. (1)

W. Liang, X. H. Zhang, J. Xia, G. Y. Jin, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Diode-pumped continuous-wave eye-safe Nd:YAP laser at 1.43μm,” Laser Phys. Lett. 8(4), 286–289 (2011).
[Crossref]

Opt. Commun. (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4–6), 395–402 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. (1)

J. L. Lan, Q. Cui, Y. Wang, B. Xu, H. Y. Xu, and Z. P. Cai, “Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm,” Opt. Mater. 60, 590–593 (2016).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (2)

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, and V. Škoda, “Influence of temperature on Nd:YAG/V:YAG compact laser generation at 1444 nm,” Proc. SPIE 7578, 75782E (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Laser experimental configuration of diode-end-pumped Nd:LuAG ceramic laser at ~1.4 μm.
Fig. 2
Fig. 2 Absorption spectrum of Nd:LuAG ceramic around 808 nm.
Fig. 3
Fig. 3 Fluorescence of Nd:LuAG ceramic from ~920 nm to ~1500 nm containing three main transition bands, i.e. from upper level 4F3/2 to three lower level 4I9/2, 4I11/2 and 4I13/2, respectively.
Fig. 4
Fig. 4 Laser output power characteristic of dual-wavelength Nd:LuAG ceramic laser at 1418 nm and 1442 nm (a) and achievement of laser spectrum (b) obtained with a free-run plane-concave cavity.
Fig. 5
Fig. 5 Laser output power characteristic (a) and laser spectrum (b) of single-wavelength Nd:LuAG ceramic laser at 1432 nm.
Fig. 6
Fig. 6 Laser output power characteristic of dual-wavelength Nd:LuAG ceramic laser at 1418 nm and 1442 nm (a) and laser spectrum (b) obtained with a free-run parallel plane cavity.
Fig. 7
Fig. 7 Laser beam quality measurement by recording the laser beam radii at different distances.

Metrics